Prevalence and sensitivity of contagious and environmental cow mastitis-causing pathogens to antibiotics in Ukrainian farms


  • Ruslan Zaritskyi National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Obstetrics, Gynecology, and biotechnology of animal reproduction, Vystavkova Str., 16, 03121, Kyiv, Ukraine
  • Yurii Zhuk National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Obstetrics, Gynecology, and biotechnology of animal reproduction, Vystavkova Str., 16, 03121, Kyiv, Ukraine
  • Denys Dreval Center of Veterinary Diagnostics LLC, Laboratory of Bacteriology and Pathanatomy, Kaisarova Str., 15-A, 03041, Kyiv, Ukraine
  • Vitalii Kovpak National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Obstetrics, Gynecology, and biotechnology of animal reproduction, Vystavkova Str., 16, 03121, Kyiv, Ukraine
  • Yurii Masalovych National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Obstetrics, Gynecology, and biotechnology of animal reproduction, Vystavkova Str., 16, 03121, Kyiv, Ukraine
  • Ivan Cheverda National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Obstetrics, Gynecology, and biotechnology of animal reproduction, Vystavkova Str., 16, 03121, Ukraine
  • Iryna Derkach National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Pharmacology, Parasitology and Tropical Veterinary Medicine, Vystavkova Str., 16, 03121, Kyiv, Ukraine
  • Taras Savchuk National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Surgery and Pathophysiology acad. I.O. Povazhenko, Vystavkova Str., 16, 03121, Kyiv, Ukraine



mastitis, milk, contagious, environmental, pathogen, cows, antibiotic resistance


Mastitis is considered the most common and problematic disease, resulting in significant economic losses due to reduced milk yields, reduced quantity and quality of milk, treatment costs, and premature culling of animals. One of the traditional methods of treating mastitis in cows is using antibiotics, which leads to the emergence of polyresistant strains of microorganisms, the so-called Superbugs. The emergence of Superbugs, which are not sensitive to most existing antibiotics, is a major concern in veterinary and humane medicine. This study aimed to identify pathogens isolated from the secretion of the mammary gland of cows with mastitis to determine their spread and sensitivity to antibiotics. The samples of secretion from the udder were examined by bacteriological method. The isolates were identified by conventional methods and by the modern method – mass spectrometry (MALDI-TOF MS). The sensitivity of the bacterial isolates to antibiotics was determined by the disc diffusion method (Kirby-Bauer). The results of studies of cow mammary gland secretion samples indicate that 49.2% of the isolates are contagious, and 50.8% are environmental ones. The most common among the isolates of mastitis-causing pathogens were Streptoccocus аgalactiae – 16.9%, Streptococcus uberis – 10.9%, Staphylococcus aureus – 10.7%, E. Coli – 9.6%, Corynebacterium bovis – 7.3%, Staphylococcus haemolyticus – 4.8%, Staphylococcus chromogenes – 3.6%, Streptococcus dysgalactiae – 3.4%. Mastitis is caused by algae and yeast – 1% of all detected pathogens, respectively. According to the results of the determination of the sensitivity of isolates of mastitis-causing pathogens to antibiotics, it was found that most isolates were sensitive to Amoxicillin, Ceftiofur, and Rifampicin, and least of them – to Neomycin, Tylosin, Tilmicosin, Bacitracin.


Download data is not yet available.


Metrics Loading ...


Cobirka, M., Tancin, V., & Slama, P. (2020). Epidemiology and Classification of Mastitis. In Ani-mals (Volume 10, Issue 12, p. 2212). MDPI AG. DOI:

Cheng, W. N., & Han, S. G. (2020). Bovine mastitis: risk factors, therapeutic strategies, and alterna-tive treatments – A review. In Asian-Australasian journal of animal sciences (Volume 33, Issue 11, pp. 1699–1713). OCUL. DOI:

Tommasoni, C., Fiore, E., Lisuzzo, A., & Gianesella, M. (2023). Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. In Animals (Volume 13, Issue 15, p. 2538). MDPI AG. DOI:

Riveros-Galán, D. S., & Obando-Chaves, M. (2020). Mastitis, somatic cell count and its impact on dairy product quality. An omission in Colombia: a literature review. In Revista Colombiana De Ciencias Pecuarias (Volume 34, Issue 4, pp. 241–253). Universidad de Antioquia, Colombia. DOI:

Käppeli, N., Morach, M., Zurfluh, K., Corti, S., Nüesch-Inderbinen, M., & Stephan, R. (2019). Sequence Types and Antimicrobial Resistance Profiles of Streptococcus uberis Isolated From Bovine Mastitis. In Frontiers in Veterinary Science (Volume 6, p. 234). National Library of Medicine. DOI:

Azooz, M. F., El-Wakeel, S. A., & Yousef, H. M. (2020). Financial and economic analyses of the impact of cattle mastitis on the profitability of Egyptian dairy farms. In Veterinary world (Volume 13, Issue 9, pp.1750–1759). Veterinary World. DOI:

Dalanezi, F. M., Joaquim, S. F., Guimarães, F. F., Guerra, S. T., Lopes, B. C., Schmidt, E. M. S., Cerri, R. L. A., & Langoni, H. (2020). Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. In Journal of dairy science (Volume 103, Issue 4, pp. 3648–3655). Elsevier Inc. DOI:

Nakada, S., Fujimoto, Y., Kohara, J., & Makita, K. (2023). Economic losses associated with mastitis due to bovine leukemia virus infection. In Journal of dairy science (Volume 106, Issue 1, pp. 576–588). Elsevier Inc. DOI:

Bhakat, C., Mohammad, A., Mandal, D. K., Mandal, A., Rai, S., Chatterjee, A., Ghosh, M. K., & Dutta, T. K. (2020). Readily usable strategies to control mastitis for production augmentation in dairy cattle: A review. In Veterinary world (Volume 13, Issue 11, pp. 2364–2370). Veterinary world. DOI:

Ateya, A. I., Ibrahim, S. S., & Al-Sharif, M. M. (2022). Single Nucleotide Polymorphisms, Gene Expression and Economic Evaluation of Parameters Associated with Mastitis Susceptibility in European Cattle Breeds. In Veterinary Sciences (Volume 9, Issue 6, pp. 294). MDPI AG. DOI:

Pal, M., Regasa, A., & Gizaw, F. (2019). Etiology, pathogenesis, risk factors, diagnosis and management of bovine mastitis: A comprehensive review. In International Journal of Animal and Veterinary Sciences (Volume 6, pp. 40–55). Society of Agricultural Research and Social Development.

Ameni, G., Bayissa, B., Zewude, A., Degefa, B. A., Mohteshamuddin, K., Kalaiah, G., Alkalbani, M.S., Eltahir, Y.M., Elfatih Hamad, M., & Tibbo, M. (2022) Retrospective study on bovine clinical mastitis and associated milk loss during the month of its peak occurrence at the National Dairy Farm in the Emirate of Abu Dhabi, United Arab Emirates. Front. In Vet. Sci. (Volume 9, p. 1070051). Frontiers Media SA. DOI:

Sharun, K., Dhama, K., Tiwari, R., Gugjoo, M. B., Yatoo, M. I., Patel, S. K., Pathak, M., Karthik, K., Khurana, S. K, Singh, R., Amarpal, P. B., Singh, R., Singh, K. P. & Chaicumpa, W. (2021) Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. In Veterinary Quarterly (Volume 41, Issue 1, pp. 107–136). Taylor & Francis. DOI:

Verma, H., Rawat, S., Sharma, N., Jaiswal, V., & Singh, R. B. (2018). Prevalence, bacterial etiology and antibiotic susceptibility pattern of bovine mastitis in Meerut. In Journal of entomology and zoology studies (Volume 6, pp. 706–709). Society of Agricultural Research and Social Development.

Rudenko, P., Sachivkina, N., Vatnikov, Y., Shabunin, S., Engashev, S., Kontsevaya, S., Karamyan, A., Bokov, D., Kuznetsova, O., & Vasilieva, E. (2021). Role of microorganisms isolated from cows with mastitis in Moscow region in biofilm formation. In Veterinary world (Volume 14, Issue 1, pp. 40–48). Veterinary world. DOI:

Rainard, P., Gilbert, F. B., Germon, P., & Foucras, G. (2021). Invited review: A critical appraisal of mastitis vaccines for dairy cows. In Journal of dairy science (Volume 104, Issue 10, pp. 10427–10448). American Dairy Science Association. DOI:

Elias, L., Balasubramanyam, A. S., Ayshpur, O. Y., Mushtuk, I. U., Sheremet, N. O., Gumeniuk, V. V., Musser, J. M. B., & Rogovskyy, A. S. (2020). Antimicrobial Susceptibility of Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli Isolated from Mastitic Dairy Cattle in Ukraine. In Antibiotics. (Volume 9, Issue 8, p. 469). MDPI. DOI:

Chen, X. F., Hou, X., Xiao, M., Zhang, L., Cheng, J. W., Zhou, M. L., Huang, J. J., Zhang, J. J., Xu, Y. C., & Hsueh, P. R. (2021). Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. In Microorganisms (Volume 9, Issue 7, p. 1536). MDPI. DOI:

Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. Washington, DC: Dec 8, 2009. posting date. Retrieved from

Morales-Ubaldo, A-L., Rivero-Perez, N., Valladares-Carranza, B., Velázquez-Ordoñez, V., Delgadillo-Ruiz, L., & Zaragoza-Bastida, A. (2023). Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. In Veterinary and Animal Science (Volume 21, p. 100306). Elsevier B.V. DOI:

Abril, A., Villa, T., Barros-Velázquez, J., Cañas, B., Sánchez-Pérez, A., Calo-Mata, P., & Carrera, M. (2020). Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. In Toxins (Volume 12, p. 537). MDPI. DOI:

Abegewi, S. N., Esemu, R. N., & Ndip, L. M. (2022). Prevalence and risk factors of coliform-associated mastitis and antibiotic resistance of coliforms from lactating dairy cows in North West Cameroon. In PloS One (Volume 17, Issue 7, e0268247). Public Library of Science. DOI:

Holko, I., Tančin, V., Vršková, M., & Tvarožková, K. (2019). Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia. In The Journal of dairy research (Volume 86, 4, pp. 436–439). Cambridge University Press. DOI:

Sztachańska, M., Barański, W., Janowski, T., Pogorzelska, J., & Zduńczyk, S. (2016). Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. In Polish Journal of Veterinary Sciences (Volume 19, Issue 1, pp. 119–124). University of Warmia and Mazury. DOI:

Ramírez Vásquez, N., Fernández-Silva, J. A., & Palacio, L. G. (2018). Tasa de incidencia de mastitis clínica y susceptibilidad antibiótica de patógenos productores de mastitis en ganado lechero del norte de Antioquia, Colombia. In Rev Med Vet. (Volume 36, pp. 75–87). Ecole Nationale Veterinaire. DOI:

Pascu, C., Herman, V., Iancu, I., & Costinar, L. (2022). Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. In Antibiotics (Volume 11, Issue 1, p. 57). MDPI. DOI:

Kamran, A., Raziq, I., Wazir, R., Ullah, P., Shah, M. I., Ali, B., Han, G., & Liu, G. (2021). Prevalence of mastitis pathogens and antimicrobial susceptibility of isolates from cattle and buffaloes in Northwest of Pakistan Frontiers in Veterinary Science. In Front Vet Sci. (Volume 8, 746755). Public Library of Science. DOI:

Arbab, S., Ullah, H., Bano, I. Li, K., Hassan, Ul-I., Wang, W., Qadeer, & Zhang, A. J. Evaluation of in vitro antibacterial effect of essential oil and some herbal plant extract used against mastitis pathogens. In Veterinary Medicine and Science (Volume 8, Issue 6, pp. 2655–2661). John Wiley & Sons. DOI:

Granja, B. M., Fidelis, C. E., Garcia, B. L. N., & Dos Santos, M. V. J. (2021). Evaluation of chromogenic culture media for rapid identification of microorganisms isolated from cows with clinical and subclinical mastitis. In J. Dairy Sci. (Volume 104, Issue 8, pp. 9115–9129). Elsevier B.V. DOI:

Martins, L., Gonçalves, J. L., Leite, R. F., Tomazi, T., Rall, V. L. M., & Santos, M. V. J. (2021). Association between antimicrobial use and antimicrobial resistance of Streptococcus uberis causing clinical mastitis. In J. Dairy Sci. (Volume 104, Issue 11, pp. 12030–12041). Elsevier B.V. DOI:

Suleiman, T. S., Karimuribo, E. D., & Mdegela, R. H. (2018). Prevalence of bovine subclinical mastitis and antibiotic susceptibility patterns of major mastitis pathogens isolated in Unguja island of Zanzibar. Tanzania. In Tropical Animal Health and Production (Volume 50, Issue 2, pp. 259–266). Springer Nature. DOI:

Ameen, F., Reda, S., El-Shatoury, S., Riad, E., Enany, M., & Alarfaj, A. (2019). Prevalence of antibiotic resistant mastitis pathogens in dairy cows in Egypt and potential biological control agents produced from plant endophytic actinobacteria. In Saudi Journal of Biological Sciences (Volume 26, Issue 7, pp. 1492–1498). Elsevier B.V. DOI:

Gunjan, Himanshu, Mukherjee, R., Vidic, J., Manzano, M., Leal, E., Raj, V.S., Pandey, R. P., & Chang, C. M. (2023). Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in the Egypt and UK. In BMC Microbiol. (Volume 23, Issue 1, p. 291). BMC. DOI:

Abd El-Hamid, M. I., El-Tarabili, R. M., Bahnass, M. M., Alshahrani, M. A., Saif, A., Alwutayd, K. M., Safhi, F. A., Mansour, A. T., Alblwi, N. A. N., Ghoneim, M. M., Elmaaty, A. A., Al-Harthi, H. F., Bendary, M. M. (2023). Partnering essential oils with antibiotics: proven therapies against bovine Staphylococcus aureus mastitis. In Front Cell Infect Microbiol (Volume 13, p. 1265027). Frontiers Media SA. DOI:

Zhuk, Y., Zaritskyi, R., Dreval, D., Derkach, S., Kovpak, V., Masalovych, Y., Ochkolyas, O., Bazyvoliak, S., Antypov, Y., & Kharsika, I. (2022). Antimicrobial susceptibility of mastitis pathogens of dairy cows in Ukraine. In Potravinarstvo Slovak Journal of Food Sciences (Volume 16, pp. 688–704). DOI:

Wataradee, S., Samngamnim, S., Boonserm, T., & Ajariyakhajorn, K. (2023). Genotypic and antimicrobial susceptibility of Streptococcus agalactiae causing bovine mastitis in the central region of Thailand. In Front Vet. Sci. (Volume 10, p. 1250436). Frontiers Media SA. DOI:

Woudstra, S., Wente, N., Zhang, Y., Leimbach, S., Gussmann, M. K., Kirkeby, C., & Krömker V. (2023). Strain diversity and infection durations of Staphylococcus spp. and Streptococcus spp. causing intramammary infections in dairy cows. In J. Dairy Sci. (Volume 106, Issue 6, pp. 4214–4231). Elsevier B.V. DOI:

Belay, N., Mohammed, N., & Seyoum, W. (2022). Bovine Mastitis: Prevalence, Risk Factors, and Bacterial Pathogens Isolated in Lactating Cows in Gamo Zone, Southern Ethiopia. In Veterinary medicine (Auckland, N.Z.) (Volume 13, pp. 9–19). Dovepress. DOI:

Kitila, G., Kebede, B., & Wakgari, M. (2021). Prevalence, aetiology and risk factors of mastitis of dairy cows kept under extensive management system in west Wollega, western Oromia, Ethiopia. In Vet Med Sci. (Volume 7, Issue 5, pp. 1593-1599). John Wiley & Sons. DOI:

Fesseha, H., Mathewos, M., Aliye, S., & Wolde, A. (2021). Study on Prevalence of Bovine Mastitis and Associated Risk Factors in Dairy Farms of Modjo Town and Suburbs, Central Oromia, Ethiopia. In Veterinary medicine (Auckland, N.Z.) (Volume, 12, pp. 271–283). Dovepress. DOI:

Bihon, A., Syoum, A., & Assefa, A. (2019). Assessment of risk factors and isolation of Staphylococcus aureus and Escherichia coli from bovine subclinical mastitic milk in and around Gondar, Northwest Ethiopia. In Trop. Anim. Health Prod. (Volume 51, 4, pp. 939–948). Springer Nature. DOI:

Awandkar, S., Kulkarni, B., Agnihotri, A., Chavan V., & Chincholkar V. (2023) Novel fluconazole-resistant zoonotic yeast isolated from mastitis. In Animal Biotechnology (Volume 34, pp. 746–755). John Wiley & Sons. DOI:

Mahmoud, S. H., & Yassein, S. N. (2023). Prevalence of Mycotic Mastitis and Evaluation of Some Virulence Potential of Candida albicans Isolated from Mastitic Goats. In Advances in Animal and Veterinary Sciences (Volume 1, Issue 9, p. 1417). Nexus Academic Publishers. DOI:

Dyson, R., Charman, N., Hodge, A., Rowe, S. M., & Taylor, L. F. (2022). A survey of mastitis pathogens including antimicrobial susceptibility in southeastern Australian dairy herds. In Journal of Dairy Science (Volume 105, Issue 2, pp. 1504–1518). Elsevier Inc. DOI:

Goulart, D. B., & Mellata, M. (2022). Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. In Frontiers in Microbiology (Vol. 13). Frontiers Media SA. DOI:

Kim, S. J., Kim, H.-T., & Kim, Y.-H. (2023). Diagnosis of Subclinical Mastitis-Causing Pathogens Using MALDI-TOF Mass Spectrometry in a Certified Organic Dairy Farm in Korea. In Journal of Veterinary Clinics (Vol. 40, Issue 6, pp. 393–398). The Korean Society of Veterinary Clinics. DOI:

Azevedo, C., Pacheco, D., Soares, L., Romão, R., Moitoso, M., Maldonado, J., Guix, R., & Simões, J. (2015). Prevalence of contagious and environmental mastitis-causing bacteria in bulk tank milk and its relationships with milking practices of dairy cattle herds in São Miguel Island (Azores). In Tropical Animal Health and Production (Vol. 48, Issue 2, pp. 451–459). Springer Science and Business Media LLC. DOI:

Tenhagen, B.-A., Köster, G., Wallmann, J., & Heuwieser, W. (2006). Prevalence of Mastitis Pathogens and Their Resistance Against Antimicrobial Agents in Dairy Cows in Brandenburg, Germany. In Journal of Dairy Science (Vol. 89, Issue 7, pp. 2542–2551). American Dairy Science Association. DOI:

Naranjo-Lucena, A., & Slowey, R. (2023). Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. In Journal of Dairy Science (Vol. 106, Issue 1, pp. 1–23). American Dairy Science Association. DOI:

El Garch, F., Youala, M., Simjee, S., Moyaert, H., Klee, R., Truszkowska, B., Rose, M., Hocquet, D., Valot, B., Morrissey, I., & de Jong, A. (2020). Antimicrobial susceptibility of nine udder pathogens recovered from bovine clinical mastitis milk in Europe 2015–2016: VetPath results. In Veterinary Microbiology (Vol. 245, p. 108644). Elsevier BV. DOI:

Dax, S. L. (1997). Tetracycline Antibiotics. In Antibacterial Chemotherapeutic Agents (pp. 159–205). Springer Netherlands. DOI:

Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. In Virulence Mechanisms of Bacterial Pathogens (pp. 481–511). ASM Press. DOI:

Liang, Z., Shen, J., Liu, J., Li, Q., Yang, F., & Ding, X. (2022). Ascorbic Acid-Mediated Modulation of Antibiotic Susceptibility of Major Bovine Mastitis Pathogens. In Infection and Drug Resistance: Vol. Volume 15 (pp. 7363–7367). Informa UK Limited. DOI:

Nonnemann, B., Lyhs, U., Svennesen, L., Kristensen, K. A., Klaas, I. C., & Pedersen, K. (2019). Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. In Journal of Dairy Science (Vol. 102, Issue 3, pp. 2515–2524). American Dairy Science Association. DOI:

Oliveira, T. C. de A., Brito, M. A. V. P., Giambiagi-de Marval, M., Vicentini, N. M., & Lange, C. C. (2021). Identification of bovine mastitis pathogens using MALDI-TOF mass spectrometry in Brazil. In Journal of Dairy Research (Vol. 88, Issue 3, pp. 302–306). Cambridge University Press (CUP). DOI:

Maksimović, Z., Čengić, B., Ćutuk, A., & Maksimović, A. (2023). Antimicrobial Resistance of Cattle Mastitis-Causing Bacteria: How to Treat? In Recent Developments on Mastitis - Treatment and Control [Working Title]. IntechOpen. DOI:

Hossain, M. K., Paul, S., Hossian, M. M., Islam, M. R., Alam, M. G. S. (2017). Bovine Mastitis and Its Therapeutic Strategy Doing Antibiotic Sensitivity Test. In Austin Journal of Veterinary Science & Animal Husbandry (Vol. 4, Issue 1). Austin Publishing Group. DOI:




How to Cite

Zaritskyi, R., Zhuk, Y., Dreval, D., Kovpak, V., Masalovych, Y., Cheverda, I., Derkach, I., & Savchuk, T. (2024). Prevalence and sensitivity of contagious and environmental cow mastitis-causing pathogens to antibiotics in Ukrainian farms. Potravinarstvo Slovak Journal of Food Sciences, 18, 547–569.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.