Characterization of soy curd residue and full-fat soy flour as protein-based food ingredients


  • Emmanuel Duah Osei
  • Abigail Ataa Pokuah University for Development Studies, Faculty of Agriculture, Food and Consumer Sciences, Department of Food Science and Technology, Nyankpala Campus, TL 1882, Tamale, Ghana
  • Richard Atuna Atinpoore University for Development Studies, Faculty of Agriculture, Food and Consumer Sciences, Department of Food Science and Technology, Nyankpala Campus, TL 1882, Tamale, Ghana
  • Eudes Sam Faisal University for Development Studies, Faculty of Agriculture, Food and Consumer Sciences, Department of Food Science and Technology, Nyankpala Campus, TL 1882, Tamale, Ghana
  • Anthony Amotoe-Bondzie Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Suchdol, Prague 16500, Czech Republic
  • Abdul-Mateni Yussif University for Development Studies, Faculty of Agriculture, Food and Consumer Sciences, Department of Food Science and Technology, Nyankpala Campus, TL 1882, Tamale, Ghana
  • Fortune Akabanda University for Development Studies, Faculty of Agriculture, Food and Consumer Sciences, Department of Food Science and Technology, Nyankpala Campus, TL 1882, Tamale, Ghana
  • Francis Kweku Amagloh University for Development Studies, Faculty of Agriculture, Food and Consumer Sciences, Department of Food Science and Technology, Nyankpala Campus, TL 1882, Tamale, Ghana



soybean, full-fat soy, soy curd residue, oxidative stability, soy protein


The study investigated the soy curd residue and full-fat soy flour as potential protein-based food ingredients. Standard protocols were used to determine proximate parameters, functional properties, markers of oxidative stability under shelf storage, colour (CIE L* a* b*), and microbial quality of the flours. Commercial Afayak soybean varieties were used to prepare soy curd residue flour and two differently treated soy flours, namely full-fat soy flour and cold-water extracted full-fat soy flour. Findings from the study indicate that processing treatment and storage time significantly (p<0.001) affected the parameters measured. Cold-water extraction of full-fat soy flour resulted in a significantly (p<0.001) higher protein content denoting 1.0, and 1.2-fold than full-fat soy flour and soy curd residue, respectively. Full-fat soy flour showed the highest peroxide, acid, and p-anisidine (p < 0.001) under processing and storage conditions. Soy curd residue was the most oxidatively stable among the samples; however, it was noted that cold-water extraction of full-fat soy had better oxidative stability than full-fat Soy flour. After 12 weeks of storage, peroxide and acid values were below the acceptable limit of 10 mEq/Kg and 0.6 mg/KOH/g, respectively. The study supports the hypothesis that the proximate composition, physicochemical properties, and oxidative stability of soy-based flours are affected by the sample processing method and storage time. The study concludes that the samples characterized in this study are oxidatively stable, protein and energy-rich and may be ideal ingredients for food product development with desirable functional properties.


Download data is not yet available.


Metrics Loading ...


Haidar, J., Muroki, N., Omwega, A., & Ayana, G. (2004). Malnutrition and iron deficiency anaemia in lactating women in urban slum communities from Addis Ababa, Ethiopia. In East African Medical Journal (Vol. 80, Issue 4). African Journals Online (AJOL). DOI:

GoG. National Nutrition Policy 2014-2017. vol. 000. 2013.

Aryeetey, R., Atuobi-Yeboah, A., Billings, L., Nisbett, N., van den Bold, M., & Toure, M. (2021). Stories of Change in Nutrition in Ghana: a focus on stunting and anemia among children under five years (2009 – 2018). In Food Security (Vol. 14, Issue 2, pp. 355–379). Springer Science and Business Media LLC. DOI:

Forsido, S. F., Rupasinghe, H. P. V., & Astatkie, T. (2013). Antioxidant capacity, total phenolics, and nutritional content in selected Ethiopian staple food ingredients. In International Journal of Food Sciences and Nutrition (Vol. 64, Issue 8, pp. 915–920). Informa UK Limited. DOI:

Goyal, R., Sharma, S., & Gill, B. S. (2012). Variability in the nutrients, antinutrients, and other bioactive compounds in soybean [Glycine max (L.) Merrill] genotypes. J. Food Legum (Vol. 25, Issue 3, pp 314–320).

Singh, P., Kumar, R., Sabapathy, S. N., & Bawa, A. S. (2008). Functional and Edible Uses of Soy Protein Products. In Comprehensive Reviews in Food Science and Food Safety (Vol. 7, Issue 1, pp. 14–28). Wiley. DOI:

Dzogbefia, V. P., Arthur, P. L., & Zakpaa, H. D. (2007). Value addition to locally produced soybean in Ghana: production of soy sauce using starter culture fermentation. In Journal of Science and Technology (Ghana) (Vol. 27, Issue 2). African Journals Online (AJOL). DOI:

Kamble, D. B., Singh, R., Rani, S., & Pratap, D. (2019). Physicochemical properties, in vitro digestibility and structural attributes of okara‐enriched functional pasta. In Journal of Food Processing and Preservation (Vol. 43, Issue 12). Hindawi Limited. DOI:

Guimarães, R. M., Silva, T. E., Lemes, A. C., Boldrin, M. C. F., da Silva, M. A. P., Silva, F. G., & Egea, M. B. (2018). Okara: A soybean by-product as an alternative to enrich vegetable paste. In LWT (Vol. 92, pp. 593–599). Elsevier BV. DOI:

Rinaldi, V. E. A., Ng, P. K. W., & Bennink, M. R. (2000). Effects of Extrusion on Dietary Fiber and Isoflavone Contents of Wheat Extrudates Enriched with Wet Okara. In Cereal Chemistry (Vol. 77, Issue 2, pp. 237–240). Wiley. DOI:

Atuna, R. A., Amagloh, F. C., Denwar, N. N., Asase, V. R., Faisal, S., Baako, E., Koomson, G., Gulkirpik, E., Toc, M., Donnelly, A., Amagloh, F. K., & Andrade Laborde, J. E. (2022). Filling the Protein Gap in Ghana: The Role of Soy. In Frontiers in Sustainable Food Systems (Vol. 5). Frontiers Media SA. DOI:

Cheng, Y., Shimizu, N., & Kimura, T. (2005). The viscoelastic properties of soybean curd (tofu) as affected by soymilk concentration and type of coagulant. In International Journal of Food Science & Technology (Vol. 40, Issue 4, pp. 385–390). Wiley. DOI:

Wali, A. (2021). Microbial fermentation and quality preservation of agro-industrial wet by-products. Okayama University.

Madhujith, T., & Sivakanthan, S. (2019). Oxidative Stability of Edible Plant Oils. In Bioactive Molecules in Food (pp. 529–551). Springer International Publishing. DOI:

Park, S.-K., Prabakaran, M., An, Y., Kwon, C., Kim, S., Yang, Y., Kim, S.-H., & Chung, I.-M. (2018). Impact of Storage Stability on Soybean (Glycine max L.) Flour Stored in Different Conditions and Package Materials. Korean Journal of Crop Science, 63(4), 338–359.

Gulkirpik, E., Toc, M., Atuna, R. A., Amagloh, F. K., & Andrade Laborde, J. E. (2021). Evaluation of Oxidative Stability of Full Fat Soybean Flour in Storage and Sensory Quality of Tuo Zaafi-Enriched with Soy Flour as Influenced by Traditional Processing Methods. In Foods (Vol. 10, Issue 9, p. 2192). MDPI AG. DOI:

AOAC, A. (2000). AOAC official methods of analysis of AOAC international. (17th Ed.).

Ikya, I. (2013). Proximate composition, nutritive and sensory properties of fermented maize, and full-fat soy flour blends for agidi production. In African Journal of Food Science (Vol. 7, Issue 12, pp. 446–450). Academic Journals. DOI:

Appiah, F., & Oduro, I. (2011). Functional properties of Artocarpus altilis pulp flour as affected by fermentation. In Agriculture and Biology Journal of North America (Vol. 2, Issue 5, pp. 773–779). Science Hub. DOI:

Okaka, J. C., & Potter, N. N. (1977). Functional and storage properties of cowpea powder‐wheat flour blends in breadmaking. In Journal of Food Science (Vol. 42, Issue 3, pp. 828–833). Wiley. DOI:

Narayana, K., & Narasinga Rao, M. S. (1982). Functional Properties of Raw and Heat Processed Winged Bean (Psophocarpus tetragonolobus) Flour. In Journal of Food Science (Vol. 47, Issue 5, pp. 1534–1538). Wiley. DOI:

Yue, X., Xu, Z., Prinyawiwatkul, W., Losso, J. N., King, J. M., & Godber, J. S. (2007). Comparison of Soybean Oils, Gum, and Defatted Soy Flour Extract in Stabilizing Menhaden Oil during Heating. In Journal of Food Science (Vol. 73, Issue 1). Wiley. DOI:

AOCS. (2004). 1. AOCS (2004) Official Methods and Recommended Practices. American Oil Chemists' Society, Champaign, IL.

Chew, S.-C., Tan, C.-P., Long, K., & Nyam, K.-L. (2016). Effect of chemical refining on the quality of kenaf (hibiscus cannabinus) seed oil. In Industrial Crops and Products (Vol. 89, pp. 59–65). Elsevier BV. DOI:

Mohapatra, D., Bira, Z. M., Kerry, J. P., Frías, J. M., & Rodrigues, F. A. (2010). Postharvest Hardness and Color Evolution of White Button Mushrooms (Agaricus bisporus). In Journal of Food Science (Vol. 75, Issue 3). Wiley. DOI:

Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2012). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. In Food and Bioprocess Technology (Vol. 6, Issue 1, pp. 36–60). Springer Science and Business Media LLC. DOI:

Al-Nasiry, B. S. A.-N. (2020). Detection of bacterial contamination in filled and dried biscuit products of young children. In Annals of Tropical Medicine and Public Health (Vol. 23, Issue 16). Africa Health Research Organization. DOI:

Batool, S., Tahir, S., Rauf, N., & Kalsoom, R. (2013). Microbiological analysis of pasteurized and fresh fruit juice sold in Rawalpindi of Pakistan. In Bangladesh Journal of Scientific and Industrial Research (Vol. 48, Issue 3, pp. 185–192). Bangladesh Journals Online (JOL). DOI:

Porwal, V. B., Bharath Kumar, S., Madhumathi, R., & Prabhasankar, P. (2014). Influence of health-based ingredient and its hydrocolloid blends on noodle processing. In Journal of Food Measurement and Characterization (Vol. 8, Issue 4, pp. 283–295). Springer Science and Business Media LLC. DOI:

Gandhi, A. P. (1990). Development of HACCP procedure for the production of full-fat soy flour. In Int. Food Res. J. (Vol. 15, Issue 2, pp. 141–154).

Etiosa, O., Chika, N., & Benedicta, A. (2018). Mineral and Proximate Composition of Soya Bean. In Asian Journal of Physical and Chemical Sciences (Vol. 4, Issue 3, pp. 1–6). Science domain International. DOI:

Bencini, M. C. (1986). Functional Properties of Drum‐Dried Chickpea (Cicer arietinum L.) Flours. In Journal of Food Science (Vol. 51, Issue 6, pp. 1518–1521). Wiley. DOI:

Guermani L, Villaume C, Bau HW, Chandrasiri V, Nicolas JP. Composition et valeur nutritionelle de l’Okara fermenté par Rhizopus oligosporus. Sci Aliments 1992;12:441–51.

Godswill, A. C. (2019). Proximate composition and functional properties of different grain flour composites for Industrial applications. In International Journal of Food Sciences (Vol. 2, Issue 1, pp. 43–64). IPR Journals and Books (International Peer Reviewed Journals and Books). DOI:

Tenagashaw, M. W., Kenji, G. M., Melaku, E. T., Huyskens-Keil, S., & Kinyuru, J. N. (2017). Teff-Based Complementary Foods Fortified with Soybean and Orange-Fleshed Sweet Potato. In Journal of Food Research (Vol. 6, Issue 1, p. 112). Canadian Center of Science and Education. DOI:

Inyang, U. E., & Ekanem, J. O. (1996). Effect of dehulling methods and desolventizing temperatures on proximate composition and some functional properties of sesame (Sesamum indicum L.) seed flour. In Journal of the American Oil Chemists’ Society (Vol. 73, Issue 9, pp. 1133–1136). Wiley. DOI:

CODEX STAN. Codex Standard for Processed Cereal-Based Foods for Infants and Young Children. Codex Aliment Comm CODEX STAN 1994;4:74–194.

Twinomuhwezi, H. Awuchi, C.G., & Rachael, M. (2020). Comparative Study of the Proximate Composition and Functional Properties of Composite Flours of Amaranth, Rice, Millet, and Soybeanf. In American Journal of Food Science and Nutrition (Vol. 6, Issue 1, p 6–19) American Association for Science and Technology.

Akpata, M. I., & Akubor, P. I. (1999). In Plant Foods for Human Nutrition (Vol. 54, Issue 4, pp. 353–362). Springer Science and Business Media LLC. DOI:

Li, B., Qiao, M., & Lu, F. (2012). Composition, Nutrition, and Utilization of Okara (Soybean Residue). In Food Reviews International (Vol. 28, Issue 3, pp. 231–252). Informa UK Limited. DOI:

El-Adawy, T. A., Rahma, E. H., El-Bedawey, A. A., & Gafar, A. F. (2001). Nutritional potential and functional properties of sweet and bitter lupin seed protein isolates. In Food Chemistry (Vol. 74, Issue 4, pp. 455–462). Elsevier BV. DOI:

Alimentarius C. Codex standard for named vegetable oils. Codex Stan 1999;210:1–13.

O’Brien, R. D. (2008). Fats and Oils. CRC Press. DOI:

Schaich, K. M., Shahidi, F., Zhong, Y., & Eskin, N. A. M. (2013). Lipid Oxidation. In Biochemistry of Foods (pp. 419–478). Elsevier. DOI:

Cucu, T., Devreese, B., Kerkaert, B., Mestdagh, F., Sucic, M., Van De Perre, I., & De Meulenaer, B. (2013). A comparative study of lipid and hypochlorous acid-induced oxidation of soybean proteins. In LWT - Food Science and Technology (Vol. 50, Issue 2, pp. 451–458). Elsevier BV. DOI:

Kumar, V., Rani, A., & Chauhan, G. S. (2006). Influence of germination temperature on oil content and fatty acid composition of soy sprouts. In J. Food Sci. Technol. (Vol. 43, Issue 3. pp 325–326). Association of Food Scientists and Technologists (India)

Dunford NT. Edible oil quality. Oklahoma Cooperative Extension Service; 2016. Available at:

Cong, S., Dong, W., Zhao, J., Hu, R., Long, Y., & Chi, X. (2020). Characterization of the Lipid Oxidation Process of Robusta Green Coffee Beans and Shelf Life Prediction during Accelerated Storage. In Molecules (Vol. 25, Issue 5, p. 1157). MDPI AG. DOI:

Bagheri, H., Kashaninejad, M., Ziaiifar, A. M., & Aalami, M. (2019). Textural, color, and sensory attributes of peanut kernels as affected by infrared roasting method. In Information Processing in Agriculture (Vol. 6, Issue 2, pp. 255–264). Elsevier BV. DOI:

Niamnuy, C., Devahastin, S., Soponronnarit, S., & Vijaya Raghavan, G. S. (2008). Kinetics of astaxanthin degradation and color changes of dried shrimp during storage. In Journal of Food Engineering (Vol. 87, Issue 4, pp. 591–600). Elsevier BV. DOI:

Food safety and quality. (2012). Available at:




How to Cite

Osei, E. D., Pokuah, A. A., Atinpoore, R. A., Faisal, E. S., Amotoe-Bondzie, A., Yussif, A.-M., Akabanda, F., & Amagloh, F. K. (2024). Characterization of soy curd residue and full-fat soy flour as protein-based food ingredients. Potravinarstvo Slovak Journal of Food Sciences, 18, 36–49.