Development of wheat composite bread using barley β-glucan rich flour
DOI:
https://doi.org/10.5219/1941Keywords:
β-glucan, barley, supplementation, mixed bread, health claimAbstract
The study highlights the potential for enhancing the nutritional value of wheat bread by incorporating β-glucan-enriched flour derived from barley. Initially, the study explores the air separation of barley flour into fractions rich in β-glucans. The procedure significantly increases the β-glucan concentration from 4.5% in barley to 8.0-10.5% in the separated coarse fractions, with yields varying from 33% to 77%. The optimal fraction of
β-glucan-rich flour (β-GRF), balancing β-glucan concentration and yield, was chosen for subsequent evaluations. The impact of different levels of β-GRF supplementation (ranging from 0% to 30%) on the dough texture and sensory characteristics of the mixed wheat bread was tested. The addition of β-GRF has a noticeable influence on the rheological properties of the dough, resulting in longer development times and decreased stability compared to control samples. As the concentration of β-GRF increases to 10%, the specific volume generally rises, reaching 3.5 cm³/g, compared to the control bread with a specific volume of 3.2 cm³/g. However, beyond the 10% β-GRF level, the specific volume starts to decrease. Furthermore, β-GRF addition affects sensory and texture aspects, including bread volume, crumb, and crust characteristics. Despite these alterations, the bread remains within acceptable sensory parameters, and the final product, with 3g of β-glucan per 100 g of bread, meets the criteria for a health claim related to cholesterol reduction. This research underscores the potential to create healthier bread options by harnessing the nutritional benefits of dry concentrated β-glucans from barley, offering a promising avenue for improving the nutritional profile of bread products.
Downloads
Metrics
References
Aoe, S., Morita, T., & Ohno, N. (Eds.). (2022). Beta-Glucan in Foods and Health Benefits. MDPI. https://doi.org/10.3390/books978-3-0365-5108-1 DOI: https://doi.org/10.3390/books978-3-0365-5108-1
Mohebbi, Z., Homayouni, A., Azizi, M. H., & Hosseini, S. J. (2017). Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties. In Journal of Food Science and Technology (Vol. 55, Issue 1, pp. 101–110). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-017-2836-9
Xu, S., Gong, Y., Rafique, H., He, T., & Hu, X. (2021). Effect of oat β-glucan addition on the staling properties of wheat-oat blended flour Chinese steamed bread. In Bioactive Carbohydrates and Dietary Fibre (Vol. 26, p. 100285). Elsevier BV. https://doi.org/10.1016/j.bcdf.2021.100285 DOI: https://doi.org/10.1016/j.bcdf.2021.100285
Regulation (EC) No 1924/2006 of the European Parliament and of the council of 20 December 2006 on nutrition and health claims made on foods.
Bozbulut, R., & Sanlier, N. (2019). Promising effects of β-glucans on glyceamic control in diabetes. In Trends in Food Science & Technology (Vol. 83, pp. 159–166). Elsevier BV. https://doi.org/10.1016/j.tifs.2018.11.018 DOI: https://doi.org/10.1016/j.tifs.2018.11.018
Garcia-Gimenez, G., Russell, J., Aubert, M. K., Fincher, G. B., Burton, R. A., Waugh, R., Tucker, M. R., & Houston, K. (2019). Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. In Scientific Reports (Vol. 9, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-019-53798-8 DOI: https://doi.org/10.1038/s41598-019-53798-8
Zhu, F., Du, B., & Xu, B. (2016). A critical review on production and industrial applications of beta-glucans. In Food Hydrocolloids (Vol. 52, pp. 275–288). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2015.07.003 DOI: https://doi.org/10.1016/j.foodhyd.2015.07.003
Maheshwari, G., Sowrirajan, S., & Joseph, B. (2017). Extraction and Isolation of β‐Glucan from Grain Sources—A Review. In Journal of Food Science (Vol. 82, Issue 7, pp. 1535–1545). Wiley. https://doi.org/10.1111/1750-3841.13765 DOI: https://doi.org/10.1111/1750-3841.13765
Ferrari, B., Finocchiaro, F., Stanca, A. M., & Gianinetti, A. (2009). Optimization of air classification for the production of β-glucan-enriched barley flours. In Journal of Cereal Science (Vol. 50, Issue 2, pp. 152–158). Elsevier BV. https://doi.org/10.1016/j.jcs.2009.04.007 DOI: https://doi.org/10.1016/j.jcs.2009.04.007
Messia, M. C., De Arcangelis, E., Candigliota, T., Trivisonno, M. C., & Marconi, E. (2020). Production of ß-glucan enriched flour from waxy barley. In Journal of Cereal Science (Vol. 93, p. 102989). Elsevier BV. https://doi.org/10.1016/j.jcs.2020.102989 DOI: https://doi.org/10.1016/j.jcs.2020.102989
Skendi, A., Papageorgiou, M., & Biliaderis, C. G. (2010). Influence of water and barley β-glucan addition on wheat dough viscoelasticity. In Food Research International (Vol. 43, Issue 1, pp. 57–65). Elsevier BV. https://doi.org/10.1016/j.foodres.2009.08.012 DOI: https://doi.org/10.1016/j.foodres.2009.08.012
Yu, L., Ma, Y., Zhao, Y., Pan, Y., Tian, R., Yao, X., Yao, Y., Cao, X., Geng, L., Wang, Z., Wu, K., & Gao, X. (2021). Effect of Hulless Barley Flours on Dough Rheological Properties, Baking Quality, and Starch Digestibility of Wheat Bread. In Frontiers in Nutrition (Vol. 8). Frontiers Media SA. https://doi.org/10.3389/fnut.2021.785847 DOI: https://doi.org/10.3389/fnut.2021.785847
McCleary, B. V., & Codd, R. (1991). Measurement of (1 → 3),(1 → 4)‐β‐D‐glucan in barley and oats: A streamlined enzymic procedure. In Journal of the Science of Food and Agriculture (Vol. 55, Issue 2, pp. 303–312). Wiley. https://doi.org/10.1002/jsfa.2740550215 DOI: https://doi.org/10.1002/jsfa.2740550215
AACC International. Approved Methods of Analysis, 11th Ed. Method 54-21. Farinograph Method for Flour. Cereals & Grains Association, St. Paul, MN, U.S.A. Retrived from https://www.cerealsgrains.org/resources/Methods/tools/Documents/54-21-01.pdf.
AACC International. Approved Methods of Analysis, 11th Ed. Method 10-05.01. Guidelines for Measurement of Volume by Rapeseed Displacement. St. Paul, MN, U.S.A. Retrived from https://www.cerealsgrains.org/resources/Methods/Pages/10BakingQuality.aspx.
ISO 13299:2016 Sensory analysis – Methodology – General guidance for establishing a sensory profile Retrived from: https://www.iso.org/obp/ui/en/#iso:std:iso:13299:ed-2:v1:en
Benito-Román, Ó., Alonso, E., Palacio, L., Prádanos, P., & Cocero, M. J. (2014). Purification and isolation of β-glucans from barley: Downstream process intensification. In Chemical Engineering and Processing: Process Intensification (Vol. 84, pp. 90–97). Elsevier BV. https://doi.org/10.1016/j.cep.2013.12.006 DOI: https://doi.org/10.1016/j.cep.2013.12.006
Cajzek, F., Bertoncelj, J., Kreft, I., Poklar Ulrih, N., Polak, T., Požrl, T., Pravst, I., Polišenská, I., Vaculová, K., & Cigić, B. (2019). Preparation of β‐glucan and antioxidant‐rich fractions by stone milling of hull‐less barley. In International Journal of Food Science & Technology (Vol. 55, Issue 2, pp. 681–689). Wiley. https://doi.org/10.1111/ijfs.14322 DOI: https://doi.org/10.1111/ijfs.14322
Huang, Z., Wang, J. J., Chen, Y., Wei, N., Hou, Y., Bai, W., & Hu, S.-Q. (2020). Effect of water-soluble dietary fiber resistant dextrin on flour and bread qualities. In Food Chemistry (Vol. 317, p. 126452). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.126452 DOI: https://doi.org/10.1016/j.foodchem.2020.126452
Zeng, F., Hu, Z., Yang, Y., Jin, Z., & Jiao, A. (2023). Regulation of baking quality and starch digestibility in whole wheat bread based on β-glucans and protein addition strategy: Significance of protein-starch-water interaction in dough. In International Journal of Biological Macromolecules (p. 128021). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2023.128021 DOI: https://doi.org/10.1016/j.ijbiomac.2023.128021
Li, Z., Gao, W., Liang, J., Fan, H., Yang, Y., Suo, B., & Ai, Z. (2023). Mechanism underlying the weakening effect of β-glucan on the gluten system. In Food Chemistry (Vol. 420, p. 136002). Elsevier BV. https://doi.org/10.1016/j.foodchem.2023.136002 DOI: https://doi.org/10.1016/j.foodchem.2023.136002
Selaković, A., Nikolić, I., Dokić, L., Šoronja-Simović, D., Šimurina, O., Zahorec, J., & Šereš, Z. (2021). Enhancing rheological performance of laminated dough with whole wheat flour by vital gluten addition. In LWT (Vol. 138, p. 110604). Elsevier BV. https://doi.org/10.1016/j.lwt.2020.110604 DOI: https://doi.org/10.1016/j.lwt.2020.110604
Lante, A., Canazza, E., & Tessari, P. (2023). Beta-Glucans of Cereals: Functional and Technological Properties. In Nutrients (Vol. 15, Issue 9, p. 2124). MDPI AG. https://doi.org/10.3390/nu15092124 DOI: https://doi.org/10.3390/nu15092124
Mohebbi, Z., Homayouni, A., Azizi, M. H., & Hosseini, S. J. (2017). Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties. In Journal of Food Science and Technology (Vol. 55, Issue 1, pp. 101–110). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-017-2836-9 DOI: https://doi.org/10.1007/s13197-017-2836-9
Torbica, A., Mocko Blažek, K., Belović, M., & Janić Hajnal, E. (2019). Quality prediction of bread made from composite flours using different parameters of empirical rheology. In Journal of Cereal Science (Vol. 89, p. 102812). Elsevier BV. https://doi.org/10.1016/j.jcs.2019.102812 DOI: https://doi.org/10.1016/j.jcs.2019.102812
Škrbić, B., Milovac, S., Dodig, D., & Filipčev, B. (2009). Effects of hull-less barley flour and flakes on bread nutritional composition and sensory properties. In Food Chemistry (Vol. 115, Issue 3, pp. 982–988). Elsevier BV. https://doi.org/10.1016/j.foodchem.2009.01.028 DOI: https://doi.org/10.1016/j.foodchem.2009.01.028
Andrzej, K. M., Małgorzata, M., Sabina, K., Horbańczuk, O. K., & Rodak, E. (2019). Application of rich in β-glucan flours and preparations in bread baked from frozen dough. In Food Science and Technology International (Vol. 26, Issue 1, pp. 53–64). SAGE Publications. https://doi.org/10.1177/1082013219865379 DOI: https://doi.org/10.1177/1082013219865379
Ortiz de Erive, M., He, F., Wang, T., & Chen, G. (2020). Development of β-glucan enriched wheat bread using soluble oat fiber. In Journal of Cereal Science (Vol. 95, p. 103051). Elsevier BV. https://doi.org/10.1016/j.jcs.2020.103051 DOI: https://doi.org/10.1016/j.jcs.2020.103051
Kurek, M. A., Wyrwisz, J., Brzeska, M., Moczkowska, M., Karp, S., & Wierzbicka, A. (2018). Effect of different beta-glucan preparation pretreatments on fortified bread quality. In Food Science and Technology (Vol. 38, Issue 4, pp. 606–611). FapUNIFESP (SciELO). https://doi.org/10.1590/fst.06917 DOI: https://doi.org/10.1590/fst.06917
Abdel-Gawad, A., Youssef, M., Abou-Elhawa, S., & Abdel-Rahman, A. (2018). Different Moisture Contents of Tempered Hull Barley and Hull-Less Barley Grains Prior to Milling 2. Effect on Physical and Sensory Properties of Bread Baked from these Barley Flours. In Journal of Food and Dairy Sciences (Vol. 2018, Issue 0, pp. 77–90). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/jfds.2018.77757 DOI: https://doi.org/10.21608/jfds.2018.77757
Gill, S., Vasanthan, T., Ooraikul, B., & Rossnagel, B. (2002). Wheat Bread Quality as Influenced by the Substitution of Waxy and Regular Barley Flours in Their Native and Extruded Forms. In Journal of Cereal Science (Vol. 36, Issue 2, pp. 219–237). Elsevier BV. https://doi.org/10.1006/jcrs.2001.0458 DOI: https://doi.org/10.1006/jcrs.2001.0458
Cicero, A. F. G., Fogacci, F., Veronesi, M., Strocchi, E., Grandi, E., Rizzoli, E., Poli, A., Marangoni, F., & Borghi, C. (2020). A Randomized Placebo-Controlled Clinical Trial to Evaluate the Medium-Term Effects of Oat Fibers on Human Health: The Beta-Glucan Effects on Lipid Profile, Glycemia and inTestinal Health (BELT) Study. In Nutrients (Vol. 12, Issue 3, p. 686). MDPI AG. https://doi.org/10.3390/nu12030686 DOI: https://doi.org/10.3390/nu12030686
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.