Biofuel production by Candida tropicalis from orange peels waste using response surface methodology

Authors

  • Noha Sorour University of Sadat City, Genetic Engineering and Biotechnology Research Institute, Department of Industrial Biotechnology, Egypt, Tel.: 01229703235
  • Saqer Herzallah Mutah University, Faculty of Agriculture, Department of Nutrition and Food Tech. Karak, Jordan, Tel.: +962-785103354
  • Nazieh Alkhalaileh Mutah University, Faculty of Agriculture, Department of Nutrition and Food Tech. Karak, Jordan, Tel.: +962-078661531547 https://orcid.org/0000-0001-6081-0468
  • Amer Mamkagh Mutah University, Faculty of Agriculture, Department of Plant Production. Karak, Jordan, Tel.: +962-79579-6414
  • Ashraf El-Baz University of Sadat City, Genetic Engineering and Biotechnology Research Institute Department of Industrial Biotechnology, Egypt, Tel.: 01229703235
  • Esra Shalaby University of Sadat City, Genetic Engineering and Biotechnology Research Institute Department of Industrial Biotechnology, Egypt, Tel.: 01229703235
  • Hani Dmoor Albalqa Applied University, Faculty of Agriculture, Department of Nutrition and Food Processing Alsalt, Jordan, Tel.: +962-79649-3086
  • Rateb Abbas University of Sadat City, Genetic Engineering and Biotechnology Research Institute Department of Microbial Biotechnology, Egypt, Tel.: 01229703235

DOI:

https://doi.org/10.5219/1913

Keywords:

bioethanol, response surface, OP, submerged fermentation, SEM

Abstract

Citrus fruits are widely consumed worldwide due to their nutritional and health benefits. However, the disposal of citrus waste poses significant environmental challenges. Orange peels (OP) are a substantial by-product of fruit processing and hold great potential as a source for bioethanol production, promoting investment in utilizing agricultural waste for biofuel purposes. OP offers a cost-effective substrate for producing value-added compounds, including bioethanol. Autoclaved-water treated OP biomass exhibited the highest release of reducing sugars (68.2%) this results supported by SEM images of that Autoclaving has definite effect on the structure of the OP particles. Among the five tested microbes, Candida tropicalis was selected as a promising bioethanol candidate due to its ethanol tolerance and ability to utilize xylose. Preliminary screening using Plackett-Burman Design (PBD) was conducted to identify six influential factors affecting the fermentation process at three levels, determining the optimum response region for bioethanol production by C. tropicalis. The significant variables were further investigated using Response Surface Methodology-Central Composite Rotatable Design (RSM-CCRD) at five levels, a novel approach in this study. The addition of cysteine and resazurin as reducing agents increased bioethanol production by 2.9 and 2.1 times, respectively, from the treated OP. Under the optimized conditions obtained from RSM-CCRD, bioethanol production reached 16.7 mg/mL per mg/ml reducing sugars. Implementing all the optimized conditions, including an initial pH of 5.75, 3% yeast extract, 2.25 g/L cysteine, 4% inoculum size, 0.6 g/L ZnSO4, 0.29 g/L MgSO4, 0.3 g/L MnSO4, and substrate treatment with active charcoal before fermentation, the bioethanol yield increased by 2.2 times after three days of fermentation using co-cultures of C. tropicalis and Kluyveromyces marxianus. The fermentation process was conducted at 30 °C and 150 rpm. Exploring OP as a low-cost renewable substrate and employing efficient microorganisms open new avenues for bioethanol production.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

John, I., Yaragarla, P., Muthaiah, P., Ponnusamy, K., & Appusamy, A. (2017). Statistical optimization of acid catalyzed steam pretreatment of citrus peel waste for bioethanol production. In Resource-Efficient Technologies (Vol. 3, Issue 4, pp. 429–433). National Research Tomsk Polytechnic University. https://doi.org/10.1016/j.reffit.2017.04.001 DOI: https://doi.org/10.1016/j.reffit.2017.04.001

Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S., Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen waste to value-added products. In Journal of Environmental Management (Vol. 241, pp. 619–630). Elsevier BV. https://doi.org/10.1016/j.jenvman.2019.02.053 DOI: https://doi.org/10.1016/j.jenvman.2019.02.053

Tan, K. T., Lee, K. T., & Mohamed, A. R. (2008). Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol. In Energy Policy (Vol. 36, Issue 9, pp. 3360–3365). Elsevier BV. https://doi.org/10.1016/j.enpol.2008.05.016 DOI: https://doi.org/10.1016/j.enpol.2008.05.016

Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. In Biochemistry and Biophysics Reports (Vol. 10, pp. 52–61). Elsevier BV. https://doi.org/10.1016/j.bbrep.2017.03.003 DOI: https://doi.org/10.1016/j.bbrep.2017.03.003

Oberoi, H. S., Vadlani, P. V., Madl, R. L., Saida, L., & Abeykoon, J. P. (2010). Ethanol Production from Orange Peels: Two-Stage Hydrolysis and Fermentation Studies Using Optimized Parameters through Experimental Design. In Journal of Agricultural and Food Chemistry (Vol. 58, Issue 6, pp. 3422–3429). American Chemical Society (ACS). https://doi.org/10.1021/jf903163t DOI: https://doi.org/10.1021/jf903163t

Sharma, K., Mahato, N., Cho, M. H., & Lee, Y. R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. In Nutrition (Vol. 34, pp. 29–46). Elsevier BV. https://doi.org/10.1016/j.nut.2016.09.006 DOI: https://doi.org/10.1016/j.nut.2016.09.006

Liu, Z.-H., Qin, L., Li, B.-Z., & Yuan, Y.-J. (2014). Physical and Chemical Characterizations of Corn Stover from Leading Pretreatment Methods and Effects on Enzymatic Hydrolysis. In ACS Sustainable Chemistry & Engineering (Vol. 3, Issue 1, pp. 140–146). American Chemical Society (ACS). https://doi.org/10.1021/sc500637c DOI: https://doi.org/10.1021/sc500637c

Tiwari, S., Jadhav, S. K., & Tiwari, K. L. (2015). Bioethanol production from rice bran with optimization of parameters by Bacillus cereus strain McR-3. In International Journal of Environmental Science and Technology (Vol. 12, Issue 12, pp. 3819–3826). Springer Science and Business Media LLC. https://doi.org/10.1007/s13762-014-0746-1 DOI: https://doi.org/10.1007/s13762-014-0746-1

Satyanarayana, T., & Kunze, G. (Eds.). (2009). Yeast Biotechnology: Diversity and Applications. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8292-4 DOI: https://doi.org/10.1007/978-1-4020-8292-4

Liu, L., Zhang, Z., Wang, J., Fan, Y., Shi, W., Liu, X., & Shun, Q. (2019). Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. In Energy (Vol. 168, pp. 946–952). Elsevier BV. https://doi.org/10.1016/j.energy.2018.11.132 DOI: https://doi.org/10.1016/j.energy.2018.11.132

Nemeth, M. A. (2003). Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd Edition. In Journal of Quality Technology (Vol. 35, Issue 4, pp. 428–429). Informa UK Limited. https://doi.org/10.1080/00224065.2003.11980243 DOI: https://doi.org/10.1080/00224065.2003.11980243

Nuanpeng, S., Thanonkeo, S., Klanrit, P., & Thanonkeo, P. (2018). Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. In Brazilian Journal of Microbiology (Vol. 49, pp. 140–150). Springer Science and Business Media LLC. https://doi.org/10.1016/j.bjm.2017.12.011 DOI: https://doi.org/10.1016/j.bjm.2017.12.011

Mäkelä, M. (2017). Experimental design and response surface methodology in energy applications: A tutorial review. In Energy Conversion and Management (Vol. 151, pp. 630–640). Elsevier BV. https://doi.org/10.1016/j.enconman.2017.09.021 DOI: https://doi.org/10.1016/j.enconman.2017.09.021

Wang, Y., Qiu, L., Zhang, T., Yang, X., & Kang, K. (2019). Optimization of Carbonization Process for the Production of Solid Biofuel from Corn Stalk Using Response Surface Methodology. In BioEnergy Research (Vol. 12, Issue 1, pp. 184–196). Springer Science and Business Media LLC. https://doi.org/10.1007/s12155-018-9955-7 DOI: https://doi.org/10.1007/s12155-018-9955-7

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. L. A. P. (2008). Determination of structural carbohydrates and lignin in biomass. In Laboratory analytical procedure (Vol. 1617, Issue 1, pp. 1–16). National Renewable Energy Laboratory.

Paez, V., Barrett, W. B., Deng, X., Diaz-Amigo, C., Fiedler, K., Fuerer, C., Hostetler, G. L., Johnson, P., Joseph, G., Konings, E. J. M., Lacorn, M., Lawry, J., Liu, H., Marceau, E., Mastovska, K., Monteroso, L., Pan, S.-J., Parker, C., Phillips, M. M., … Coates, S. G. (2016). AOAC SMPR® 2016.002. In Journal of AOAC INTERNATIONAL (Vol. 99, Issue 4, pp. 1122–1124). Oxford University Press (OUP). https://doi.org/10.5740/jaoacint.smpr2016.002 DOI: https://doi.org/10.5740/jaoacint.SMPR2016.002

Cypriano, D. Z., da Silva, L. L., & Tasic, L. (2018). High value-added products from the orange juice industry waste. In Waste Management (Vol. 79, pp. 71–78). Elsevier BV. https://doi.org/10.1016/j.wasman.2018.07.028 DOI: https://doi.org/10.1016/j.wasman.2018.07.028

Zabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. In Renewable and Sustainable Energy Reviews (Vol. 66, pp. 751–774). Elsevier BV. https://doi.org/10.1016/j.rser.2016.08.038 DOI: https://doi.org/10.1016/j.rser.2016.08.038

Kang, K. E., Jeong, G.-T., Sunwoo, C., & Park, D.-H. (2011). Pretreatment of rapeseed straw by soaking in aqueous ammonia. In Bioprocess and Biosystems Engineering (Vol. 35, Issues 1–2, pp. 77–84). Springer Science and Business Media LLC. https://doi.org/10.1007/s00449-011-0606-z DOI: https://doi.org/10.1007/s00449-011-0606-z

Negrulescu, A., Patrulea, V., Mincea, M. M., Ionascu, C., Vlad-Oros, B. A., & Ostafe, V. (2012). Adapting the reducing sugars method with dinitrosalicylic acid to microtiter plates and microwave heating. In Journal of the Brazilian Chemical Society (Vol. 23, Issue 12, pp. 2176–2182). FapUNIFESP (SciELO). https://doi.org/10.1590/s0103-50532013005000003 DOI: https://doi.org/10.1590/S0103-50532013005000003

El-Tayeb, T. S., Abdelhafez, A. A., Ali, S. H., & Ramadan, E. M. (2012). Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. In Brazilian Journal of Microbiology (Vol. 43, Issue 4, pp. 1523–1535). FapUNIFESP (SciELO). https://doi.org/10.1590/s1517-83822012000400037 DOI: https://doi.org/10.1590/S1517-83822012000400037

Fakruddin, Md. (2013). Characterization of Stress Tolerant High Potential Ethanol Producing Yeast from Agro-Industrial Waste. In American Journal of BioScience (Vol. 1, Issue 2, p. 24). Science Publishing Group. https://doi.org/10.11648/j.ajbio.20130102.11 DOI: https://doi.org/10.11648/j.ajbio.20130102.11

Oiwoh, O., Ayodele, B. V., Amenaghawon, N. A., & Okieimen, C. O. (2018). Optimization of bioethanol production from simultaneous saccharification and fermentation of pineapple peels using <i>Saccharomyces cerevisiae</i> In Journal of Applied Sciences and Environmental Management (Vol. 21, Issue 7, p. 1256). African Journals Online (AJOL). https://doi.org/10.4314/jasem.v21i7.5 DOI: https://doi.org/10.4314/jasem.v21i7.5

Anschau, A., Santos, L. O. dos, & Alegre, R. M. (2013). A cost effective fermentative production of glutathione by Saccharomyces cerevisiae with cane molasses and glycerol. In Brazilian Archives of Biology and Technology (Vol. 56, Issue 5, pp. 849–857). FapUNIFESP (SciELO). https://doi.org/10.1590/s1516-89132013000500017 DOI: https://doi.org/10.1590/S1516-89132013000500017

Yong, X., Raza, W., Yu, G., Ran, W., Shen, Q., & Yang, X. (2011). Optimization of the production of poly-γ-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates. In Bioresource Technology (Vol. 102, Issue 16, pp. 7548–7554). Elsevier BV. https://doi.org/10.1016/j.biortech.2011.05.057 DOI: https://doi.org/10.1016/j.biortech.2011.05.057

Le Man, H., Behera, S. K., & Park, H. S. (2009). Optimization of operational parameters for ethanol production from Korean food waste leachate. In International Journal of Environmental Science & Technology (Vol. 7, Issue 1, pp. 157–164). Springer Science and Business Media LLC. https://doi.org/10.1007/bf03326127 DOI: https://doi.org/10.1007/BF03326127

Palukurty, M. A., Telgana, N. K., Bora, H. S. R., & Mulampaka, S. N. (2008). Screening and optimization of metal ions to enhance ethanol production using statistical experimental designs. In African Journal of Microbiology Research (Vol. 2, Issue 4, pp. 87–94). Academic Journals.

Ma, Y., Gao, N., Chu, W., & Li, C. (2013). Removal of phenol by powdered activated carbon adsorption. In Frontiers of Environmental Science & Engineering (Vol. 7, Issue 2, pp. 158–165). Springer Science and Business Media LLC. https://doi.org/10.1007/s11783-012-0479-7 DOI: https://doi.org/10.1007/s11783-012-0479-7

Tan, M., Ma, L., Rehman, M. S. U., Ahmed, M. A., Sajid, M., Xu, X., Sun, Y., Cui, P., & Xu, J. (2019). Screening of acidic and alkaline pretreatments for walnut shell and corn stover biorefining using two way heterogeneity evaluation. In Renewable Energy (Vol. 132, pp. 950–958). Elsevier BV. https://doi.org/10.1016/j.renene.2018.07.131 DOI: https://doi.org/10.1016/j.renene.2018.07.131

Chen, M., Xia, L., & Xue, P. (2007). Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. In International Biodeterioration & Biodegradation (Vol. 59, Issue 2, pp. 85–89). Elsevier BV. https://doi.org/10.1016/j.ibiod.2006.07.011 DOI: https://doi.org/10.1016/j.ibiod.2006.07.011

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. In Molecules (Vol. 18, Issue 6, pp. 6852–6865). MDPI AG. https://doi.org/10.3390/molecules18066852 DOI: https://doi.org/10.3390/molecules18066852

Mushimiyimana, I., & Tallapragada, P. (2017). Bioethanol production from agro wastes by acid hydrolysis and fermentation process. In Journal of Scientific & Industrial Research (Vol. 75, pp. 383–388). CSIR-NIScPR.

Evcan, E., & Tari, C. (2015). Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. In Energy (Vol. 88, pp. 775–782). Elsevier BV. https://doi.org/10.1016/j.energy.2015.05.090 DOI: https://doi.org/10.1016/j.energy.2015.05.090

Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. In Bioresource Technology (Vol. 199, pp. 49–58). Elsevier BV. https://doi.org/10.1016/j.biortech.2015.08.061 DOI: https://doi.org/10.1016/j.biortech.2015.08.061

Raud, M., Tutt, M., Olt, J., & Kikas, T. (2016). Dependence of the hydrolysis efficiency on the lignin content in lignocellulosic material. In International Journal of Hydrogen Energy (Vol. 41, Issue 37, pp. 16338–16343). Elsevier BV. https://doi.org/10.1016/j.ijhydene.2016.03.190 DOI: https://doi.org/10.1016/j.ijhydene.2016.03.190

Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. In Renewable Energy (Vol. 37, Issue 1, pp. 19–27). Elsevier BV. https://doi.org/10.1016/j.renene.2011.06.045 DOI: https://doi.org/10.1016/j.renene.2011.06.045

Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. In Frontiers in Energy Research (Vol. 6). Frontiers Media SA. https://doi.org/10.3389/fenrg.2018.00141 DOI: https://doi.org/10.3389/fenrg.2018.00141

Yu, G., Yano, S., Inoue, H., Inoue, S., Endo, T., & Sawayama, S. (2009). Pretreatment of Rice Straw by a Hot-Compressed Water Process for Enzymatic Hydrolysis. In Applied Biochemistry and Biotechnology (Vol. 160, Issue 2, pp. 539–551). Springer Science and Business Media LLC. https://doi.org/10.1007/s12010-008-8420-z DOI: https://doi.org/10.1007/s12010-008-8420-z

de la Torre, I., Ravelo, M., Segarra, S., Tortajada, M., Santos, V. E., & Ladero, M. (2017). Study on the effects of several operational variables on the enzymatic batch saccharification of orange solid waste. In Bioresource Technology (Vol. 245, pp. 906–915). Elsevier BV. https://doi.org/10.1016/j.biortech.2017.08.094 DOI: https://doi.org/10.1016/j.biortech.2017.08.094

Li, W.-C., Li, X., Zhu, J.-Q., Qin, L., Li, B.-Z., & Yuan, Y.-J. (2018). Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation. In Energy (Vol. 157, pp. 877–885). Elsevier BV. https://doi.org/10.1016/j.energy.2018.06.002 DOI: https://doi.org/10.1016/j.energy.2018.06.002

Xu, H., Zhao, N., Yao, H., Qin, H., Zeng, J., Ran, Y., Yang, Y., Qiao, D., & Cao, Y. (2019). Lipid production from corn stover by a cost-efficient system featuring ammonium carbonate-steam explosion and recirculating enzymatic hydrolysis. In Biomass and Bioenergy (Vol. 120, pp. 387–395). Elsevier BV. https://doi.org/10.1016/j.biombioe.2018.11.020 DOI: https://doi.org/10.1016/j.biombioe.2018.11.020

Kazemi Shariat Panahi, H., Dehhaghi, M., Aghbashlo, M., Karimi, K., & Tabatabaei, M. (2020). Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. In Renewable Energy (Vol. 145, pp. 699–710). Elsevier BV. https://doi.org/10.1016/j.renene.2019.06.081 DOI: https://doi.org/10.1016/j.renene.2019.06.081

Wakai, S., Nakashima, N., Ogino, C., Tsutsumi, H., Hata, Y., & Kondo, A. (2019). Modified expression of multi-cellulases in a filamentous fungus Aspergillus oryzae. In Bioresource Technology (Vol. 276, pp. 146–153). Elsevier BV. https://doi.org/10.1016/j.biortech.2018.12.117 DOI: https://doi.org/10.1016/j.biortech.2018.12.117

Abd Razak, D. L., Abd Rashid, N. Y., Jamaluddin, A., Sharifudin, S. A., Abd Kahar, A., & Long, K. (2017). Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. In Journal of the Saudi Society of Agricultural Sciences (Vol. 16, Issue 2, pp. 127–134). Elsevier BV. https://doi.org/10.1016/j.jssas.2015.04.001 DOI: https://doi.org/10.1016/j.jssas.2015.04.001

Londoño-Hernández, L., Ramírez-Toro, C., Ruiz, H. A., Ascacio-Valdés, J. A., Aguilar-Gonzalez, M. A., Rodríguez-Herrera, R., & Aguilar, C. N. (2017). Rhizopus oryzae – Ancient microbial resource with importance in modern food industry. In International Journal of Food Microbiology (Vol. 257, pp. 110–127). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2017.06.012 DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.06.012

Naga Padma, P., Anuradha, K., & Reddy, G. (2011). Pectinolytic yeast isolates for cold-active polygalacturonase production. In Innovative Food Science & Emerging Technologies (Vol. 12, Issue 2, pp. 178–181). Elsevier BV. https://doi.org/10.1016/j.ifset.2011.02.001 DOI: https://doi.org/10.1016/j.ifset.2011.02.001

Almeida D., Soares Da Silva R.D.C., Brasileiro P., Luna J., Silva M.D.G., Rufino R., Costa A., Dos Santos V. A., & Sarubbo L. (2018). Application of a biosurfactant from candida tropicalis ucp 0996 produced in low-cost substrates for hydrophobic contaminants removal. In Chemical Engineering Transactions (Vol. 64, pp. 541–546). AIDIC-Italian Association of Chemical Engineering. https://doi.org/10.3303/CET1864091

El Baz, A. F. (2011). Kinetic behavior of Candida tropicalis during xylitol production using semi-synthetic and hydrolysate based media. In African Journal of Biotechnology (Vol. 10, Issue 73). Academic Journals. https://doi.org/10.5897/ajb11.1766 DOI: https://doi.org/10.5897/AJB11.1766

Spohner, S. C., Schaum, V., Quitmann, H., & Czermak, P. (2016). Kluyveromyces lactis: An emerging tool in biotechnology. In Journal of Biotechnology (Vol. 222, pp. 104–116). Elsevier BV. https://doi.org/10.1016/j.jbiotec.2016.02.023 DOI: https://doi.org/10.1016/j.jbiotec.2016.02.023

Shariq, M., & Sohail, M. (2019). Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. In Journal of King Saud University - Science (Vol. 31, Issue 4, pp. 1189–1194). Elsevier BV. https://doi.org/10.1016/j.jksus.2018.04.009 DOI: https://doi.org/10.1016/j.jksus.2018.04.009

Nguyen, N. H., Suh, S.-O., Marshall, C. J., & Blackwell, M. (2006). Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. In Mycological Research (Vol. 110, Issue 10, pp. 1232–1241). Elsevier BV. https://doi.org/10.1016/j.mycres.2006.07.002 DOI: https://doi.org/10.1016/j.mycres.2006.07.002

Zuza-Alves, D. L., Silva-Rocha, W. P., & Chaves, G. M. (2017). An Update on Candida tropicalis Based on Basic and Clinical Approaches. In Frontiers in Microbiology (Vol. 8). Frontiers Media SA. https://doi.org/10.3389/fmicb.2017.01927 DOI: https://doi.org/10.3389/fmicb.2017.01927

Akyilmaz, E., Guvenc, C., & Koylu, H. (2020). A novel mıcrobıal bıosensor system based on C. tropicalis yeast cells for selectıve determınatıon of L-Ascorbıc acid. In Bioelectrochemistry (Vol. 132, p. 107420). Elsevier BV. https://doi.org/10.1016/j.bioelechem.2019.107420 DOI: https://doi.org/10.1016/j.bioelechem.2019.107420

Wu, C., & Tu, X. (2016). Biological and fermentative conversion of syngas. In Handbook of Biofuels Production (pp. 335–357). Elsevier. https://doi.org/10.1016/b978-0-08-100455-5.00012-6 DOI: https://doi.org/10.1016/B978-0-08-100455-5.00012-6

Alriksson, B., Cavka, A., & Jönsson, L. J. (2011). Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. In Bioresource Technology (Vol. 102, Issue 2, pp. 1254–1263). Elsevier BV. https://doi.org/10.1016/j.biortech.2010.08.037 DOI: https://doi.org/10.1016/j.biortech.2010.08.037

Hossain, T., Miah, A. B., Mahmud, S. A., & Mahin, A.-A.-. (2018). Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium. In Applied Biochemistry and Biotechnology (Vol. 186, Issue 2, pp. 425–442). Springer Science and Business Media LLC. https://doi.org/10.1007/s12010-018-2747-x DOI: https://doi.org/10.1007/s12010-018-2747-x

Izmirlioglu, G., & Demirci, A. (2015). Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization. In International Journal of Molecular Sciences (Vol. 16, Issue 10, pp. 24490–24505). MDPI AG. https://doi.org/10.3390/ijms161024490 DOI: https://doi.org/10.3390/ijms161024490

Yu, X., Guo, N., Chi, Z., Gong, F., Sheng, J., & Chi, Z. (2009). Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. In Biochemical Engineering Journal (Vol. 43, Issue 3, pp. 266–271). Elsevier BV. https://doi.org/10.1016/j.bej.2008.10.018 DOI: https://doi.org/10.1016/j.bej.2008.10.018

Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol Production from Fermentable Sugar Juice. In The Scientific World Journal (Vol. 2014, pp. 1–11). Hindawi Limited. https://doi.org/10.1155/2014/957102 DOI: https://doi.org/10.1155/2014/957102

Raja Sathendra, E., Baskar, G., Praveenkumar, R., & Gnansounou, E. (2019). Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. In Bioresource Technology (Vol. 271, pp. 345–352). Elsevier BV. https://doi.org/10.1016/j.biortech.2018.09.134 DOI: https://doi.org/10.1016/j.biortech.2018.09.134

Ezhumalai, S., & Thangavelu, V. (2010). Kinetic and optimization studies on the bioconversion of lignocellulosic material into ethanol. In BioResources (Vol. 5, Issue 3, pp. 1879–1894). BioResources. https://doi.org/10.15376/biores.5.3.1879-1894 DOI: https://doi.org/10.15376/biores.5.3.1879-1894

Sharma, N., Kalra, K. L., Oberoi, H. S., & Bansal, S. (2007). Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. In Indian Journal of Microbiology (Vol. 47, Issue 4, pp. 310–316). Springer Science and Business Media LLC. https://doi.org/10.1007/s12088-007-0057-z DOI: https://doi.org/10.1007/s12088-007-0057-z

Jambo, S. A., Abdulla, R., Marbawi, H., & Gansau, J. A. (2019). Response surface optimization of bioethanol production from third generation feedstock - Eucheuma cottonii. In Renewable Energy (Vol. 132, pp. 1–10). Elsevier BV. https://doi.org/10.1016/j.renene.2018.07.133 DOI: https://doi.org/10.1016/j.renene.2018.07.133

Sininart Chongkhong. (2017). Response surface optimization of ethanol productionfrom banana peels by organic acid hydrolysis and fermentation. Songklanakarin Journal of Science and Technology (SJST), 39, 2. https://doi.org/10.14456/SJST-PSU.2017.28

Hashem, M., Alamri, S. A., Alrumman, S. A., & Qahtani, M. S. A. A.-. (2015). Enhancement of Bio-Ethanol Production from Date Molasses by Non-Conventional Yeasts. In Research Journal of Microbiology (Vol. 10, Issue 3, pp. 114–125). Science Alert. https://doi.org/10.3923/jm.2015.114.125 DOI: https://doi.org/10.3923/jm.2015.114.125

Lee, S. C., & Park, S. (2016). Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods. In Bioresource Technology (Vol. 216, pp. 661–668). Elsevier BV. https://doi.org/10.1016/j.biortech.2016.06.007 DOI: https://doi.org/10.1016/j.biortech.2016.06.007

Singh, A., Bajar, S., & Bishnoi, N. R. (2014). Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. In Fuel (Vol. 116, pp. 699–702). Elsevier BV. https://doi.org/10.1016/j.fuel.2013.08.072 DOI: https://doi.org/10.1016/j.fuel.2013.08.072

Zhang, Y., Xia, C., Lu, M., & Tu, M. (2018). Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates. In Biotechnology for Biofuels (Vol. 11, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s13068-018-1182-0 DOI: https://doi.org/10.1186/s13068-018-1182-0

Nuwamanya, E., Chiwona-Karltun, L., Kawuki, R. S., & Baguma, Y. (2011). Bio-Ethanol Production from Non-Food Parts of Cassava (Manihot esculenta Crantz). In AMBIO (Vol. 41, Issue 3, pp. 262–270). Springer Science and Business Media LLC. https://doi.org/10.1007/s13280-011-0183-z DOI: https://doi.org/10.1007/s13280-011-0183-z

Patle, S., & Lal, B. (2007). Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. In Biotechnology Letters (Vol. 29, Issue 12, pp. 1839–1843). Springer Science and Business Media LLC. https://doi.org/10.1007/s10529-007-9493-4 DOI: https://doi.org/10.1007/s10529-007-9493-4

Wu, W.-H., Hung, W.-C., Lo, K.-Y., Chen, Y.-H., Wan, H.-P., & Cheng, K.-C. (2016). Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. In Bioresource Technology (Vol. 201, pp. 27–32). Elsevier BV. https://doi.org/10.1016/j.biortech.2015.11.015 DOI: https://doi.org/10.1016/j.biortech.2015.11.015

Sudhakar, D. V., & Maini, S. B. (2000). Isolation and characterization of mango peel pectins. In Journal of Food Processing and Preservation (Vol. 24, Issue 3, pp. 209–227). Hindawi Limited. https://doi.org/10.1111/j.1745-4549.2000.tb00414.x DOI: https://doi.org/10.1111/j.1745-4549.2000.tb00414.x

Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. In Biometrika (Vol. 33, Issue 4, pp. 305–325). Oxford University Press (OUP). https://doi.org/10.1093/biomet/33.4.305 DOI: https://doi.org/10.1093/biomet/33.4.305

Pan, X., Gilkes, N., & Saddler, J. N. (2006). Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. In Holzforschung (Vol. 60, Issue 4, pp. 398–401). Walter de Gruyter GmbH. https://doi.org/10.1515/hf.2006.062 DOI: https://doi.org/10.1515/HF.2006.062

El Sayed, W. M. M., & Ibrahim, H. A. H. (2016). Evaluation of Bioethanol Production from Ulva lactuca By Saccharomyces cerevisiae. In Journal of Biotechnology & Biomaterials (Vol. 6, Issue 2). OMICS Publishing Group. https://doi.org/10.4172/2155-952x.1000226 DOI: https://doi.org/10.4172/2155-952X.1000226

Deesuth, O., Laopaiboon, P., Jaisil, P., & Laopaiboon, L. (2012). Optimization of Nitrogen and Metal Ions Supplementation for Very High Gravity Bioethanol Fermentation from Sweet Sorghum Juice Using an Orthogonal Array Design. In Energies (Vol. 5, Issue 9, pp. 3178–3197). MDPI AG. https://doi.org/10.3390/en5093178 DOI: https://doi.org/10.3390/en5093178

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. In Analytical Chemistry (Vol. 31, Issue 3, pp. 426–428). American Chemical Society (ACS). https://doi.org/10.1021/ac60147a030 DOI: https://doi.org/10.1021/ac60147a030

Downloads

Published

2023-11-02

How to Cite

Sorour, N., Herzallah, S., Alkhalaileh, N., Mamkagh, A., El-Baz, A., Shalaby, E., Dmoor, H., & Abbas, R. (2023). Biofuel production by Candida tropicalis from orange peels waste using response surface methodology. Potravinarstvo Slovak Journal of Food Sciences, 17, 862–885. https://doi.org/10.5219/1913