Improving the quality and the technology of processed cheeses

Authors

  • Maria Alimardanova Almaty Technological University, The Faculty of Food Technologies, Department of Food Products, Tole bi street, 100, 050000, Almaty, Republik of Kazakhstan, Tel.: +77783115099 https://orcid.org/0000-0003-4861-7862
  • Zhandos Akpanov Almaty Technological University, The Faculty of Food Technologies, Department of of Food Safety and Quality, Tole bi street, 100, 050000, Almaty, Republik of Kazakhstan. Tel.: +77078332052
  • Alexander Prosekov Kemerovo State University, 650000, Kemerovo region, the city of Kemerovo, Krasnaya street, 6, Russian Federation, Tel.: +7 (3842) 58-12-26

DOI:

https://doi.org/10.5219/1911

Keywords:

quality, processed cheeses, thrombogenicity factor, utilisation factor, PDCAAS, fatty acid, amino acid, composition

Abstract

This article investigates processed cheese's nutritional value and safety by adding vegetable additives (dry Spirulina powder). Processed cheese for lunch is taken as a basis for the formulation. As a control, we took cheese made according to classical technology. We used cheeses from cow's milk. We used combined raw materials in the developed technology: cow's and goat's milk cheeses. Spirulina was added to the formulation as an enrichment agent in the 1%, 2%, and 3% ratio, respectively. The sample with a 1% addition was found to be rational according to the results of the organoleptic evaluation. The formulation was optimised in further study by selecting 0.5%, 1.5% and 2%. A centre composite plot was used to add points around the pre-lagged optimum. A regression formula was obtained, and the melting salts and the dosage of the added enrichment agent were determined. Also, the share of cheese from goat's milk in the recipe of processed cheese was determined. The recipe was calculated on the principle of material balance. Experimental samples were examined for fatty acid and amino acid composition. The tables compare the best sample on organoleptic evaluation with the control.  It was found that when 3% is added, the cheese acquires a dark green tinge. The colour is deep green when 2% is added; when 1% or less is added, the colour is salad. The dose of melting salts in the recipe was reduced to 2%; in the classic recipe, it was 3.9%.   The protein of the experimental sample turned out to be closer to the ideal protein. PDCAAS is equal to 96.9, while in the control sample, PDCAAS is equal to 39.9. Also, when comparing the fatty acid composition, the thrombogenicity coefficient was lower in the experimental sample than in the control.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alimardanova, M., Tlevlessova, D., Bakiyeva, V., & Akpanov, Z. (2021). Revealing the features of the formation of the properties of processed cheese with wild onions. In Eastern-European Journal of Enterprise Technologies (Vol. 4, Issue 11(112), pp. 73-81). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2021.239120 DOI: https://doi.org/10.15587/1729-4061.2021.239120

Mohamed, A. G., Abo-El-Khair, B. E., & Shalaby, S. M. (2013). Quality of novel healthy processed cheese analogue enhanced with marine microalgae Chlorella vulgaris biomass. In World Applied Sciences Journal (Vol. 23, Issue 7, pp. 914–925). International Digital Organization for Scientific Information. https://doi.org/10.5829/idosi.wasj.2013.23.07.13122

Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto, H., & Benjakul, S. (2016). Application of spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory perspectives. In Jurnal Teknologi (Vol. 78, Issues 4–2). Penerbit UTM Press. https://doi.org/10.11113/jt.v78.8216 DOI: https://doi.org/10.11113/jt.v78.8216

Michael, A., Kyewalyanga, M. S., & Lugomela, C. V. (2019). Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. In Annals of Microbiology (Vol. 69, Issue 13, pp. 1387–1395). Springer Science and Business Media LLC. https://doi.org/10.1007/s13213-019-01520-4 DOI: https://doi.org/10.1007/s13213-019-01520-4

Mohamed, A. G., El-Salam, B. A. E.-Y., & Gafour, W. A. E.-M. (2020). Quality Characteristics of Processed Cheese Fortified with Spirulina Powder. In Pakistan Journal of Biological Sciences (Vol. 23, Issue 4, pp. 533–541). Science Alert. https://doi.org/10.3923/pjbs.2020.533.541 DOI: https://doi.org/10.3923/pjbs.2020.533.541

Cumhur, O., & Kilic-Akyilmaz, M. (2022). Special processed cheeses, cheese spreads, and analogue cheeses. In Processed Cheese Science and Technology (pp. 269–295). Elsevier. https://doi.org/10.1016/b978-0-12-821445-9.00009-1 DOI: https://doi.org/10.1016/B978-0-12-821445-9.00009-1

Anciens Ramos, G. L. de P., Silva e Alves, A. T., Spadoti, L. M., Zacarchenco, P. B., & da Cruz, A. G. (2022). Low salt and low sodium processed cheeses. In Processed Cheese Science and Technology (pp. 177–197). Elsevier. https://doi.org/10.1016/b978-0-12-821445-9.00001-7 DOI: https://doi.org/10.1016/B978-0-12-821445-9.00001-7

Burgos, L., Pece, N., & Maldonado, S. (2020). Textural, rheological and sensory properties of spreadable processed goat cheese. In International Journal of Food Studies (Vol. 9). ISEKI Food Association. https://doi.org/10.7455/ijfs/9.si.2020.a5 DOI: https://doi.org/10.7455/ijfs/9.SI.2020.a5

Schaafsma, G. (2000). The Protein Digestibility–Corrected Amino Acid Score. In The Journal of Nutrition (Vol. 130, Issue 7, pp. 1865S-1867S). Elsevier BV. https://doi.org/10.1093/jn/130.7.1865s DOI: https://doi.org/10.1093/jn/130.7.1865S

Agnihotri, M. K., & Prasad, V. S. S. (1993). Biochemistry and processing of goat milk and milk products. In Small Ruminant Research (Vol. 12, Issue 2, pp. 151–170). Elsevier BV. https://doi.org/10.1016/0921-4488(93)90080-2 DOI: https://doi.org/10.1016/0921-4488(93)90080-2

Burgos, L., Pece, N., & Maldonado, S. (2019). Spreadable processed cheese using natural goat cheese ripened. In Nutrition & Food Science (Vol. 50, Issue 6, pp. 1001–1012). Emerald. https://doi.org/10.1108/nfs-08-2019-0252 DOI: https://doi.org/10.1108/NFS-08-2019-0252

Cais-Sokolińska, D., Bierzuńska, P., Kaczyński, Ł. K., Baranowska, H. M., & Tomaszewska-Gras, J. (2018). Stability of texture, meltability and water mobility model of pizza-style cheeses from goat’s milk. In Journal of Food Engineering (Vol. 222, pp. 226–236). Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2017.11.034 DOI: https://doi.org/10.1016/j.jfoodeng.2017.11.034

Mohamed, A. G., Ibrahim, O. A. E., Gafour, W. A. M. S., & Farahat, E. S. A. (2020). Comparative study of processed cheese produced from sheep and cow milk. In Journal of Food Processing and Preservation (Vol. 45, Issue 1). Hindawi Limited. https://doi.org/10.1111/jfpp.15003 DOI: https://doi.org/10.1111/jfpp.15003

Imankulova, G., Kalibekkyzy, Z., Kapshakbaeva, Z., Kyrykbaeva, S., Beisembayeva, A., Zhakupbekova, S., Maizhanova, A., Baytukenova, S., & Ali Shariati, M. (2023). The study of nutritional value and microbiological characteristics of brine cheese with vegetable additive. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, pp. 185–199). HACCP Consulting. https://doi.org/10.5219/1851 DOI: https://doi.org/10.5219/1851

Alimardanova, M., & Bakiyeva, V. (2022). Effect of enterosorbing dietary fibers on the quality and safety of fermented milk products. In Eastern-European Journal of Enterprise Technologies (Vol. 4, Issue 11 (118), pp. 79–87). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2022.263032 DOI: https://doi.org/10.15587/1729-4061.2022.263032

Shunekeyeva, A. A., Alimardanova, M., & Albertovich, M. A. (2021). Chemical Composition, Texture and Sensory Evaluation of Yogurts Supplemented with Amaranth Flour. In American Journal of Animal and Veterinary Sciences (Vol. 16, Issue 2, pp. 136–143). Science Publications. https://doi.org/10.3844/ajavsp.2021.136.143 DOI: https://doi.org/10.3844/ajavsp.2021.136.143

Kaymaz, I., & McMahon, C. A. (2005). A response surface method based on weighted regression for structural reliability analysis. In Probabilistic Engineering Mechanics (Vol. 20, Issue 1, pp. 11–17). Elsevier BV. https://doi.org/10.1016/j.probengmech.2004.05.005 DOI: https://doi.org/10.1016/j.probengmech.2004.05.005

Patial, K., & Ghosh, B. C. (2023). Process optimization of functional processed mozzarella cheese using response surface methodology. In International Dairy Journal (Vol. 141, p. 105556). Elsevier BV. https://doi.org/10.1016/j.idairyj.2022.105556 DOI: https://doi.org/10.1016/j.idairyj.2022.105556

Kovalev, A. A., Mikheeva, E. R., Panchenko, V., Katraeva, I. V., Kovalev, D. A., Zhuravleva, E. A., & Litti, Y. V. (2022). Optimization of Energy Production from Two-Stage Mesophilic–Thermophilic Anaerobic Digestion of Cheese Whey Using a Response Surface Methodology Approach. In Energies (Vol. 15, Issue 23, p. 8928). MDPI AG. https://doi.org/10.3390/en15238928 DOI: https://doi.org/10.3390/en15238928

Kolev, N. D., Balev, D. K., Vlahova-Vangelova, D. B., & Dragoev, S. G. (2022). Stabilization of oxidative processes in cooked sausages byoptimization of incorporated biologically activesubstances. In Carpathian Journal of Food Science and Technology (pp. 180–188). Technical University of Cluj Napoca. https://doi.org/10.34302/crpjfst/2022.14.4.14 DOI: https://doi.org/10.34302/crpjfst/2022.14.4.14

Bredikhin, S. A., Andreev, V. N., Martekha, A. N., & Berezovsky, Y. M. (2021). Investigation of rheological characteristics of processed cheese. In Polzunov Bulletin (Issue 4, pp. 35–40). Bredikhin Sergey Alekseevich. Altai State Technical University. https://doi.org/10.25712/ASTU.2072-8921.2021.04.005 DOI: https://doi.org/10.25712/ASTU.2072-8921.2021.04.005

Barrón-Hoyos, J. M., Archuleta, A. R., Falcón-Villa, M. del R., Canett-Romero, R., Cinco-Moroyoqui, F. J., Romero-Barancini, A. L., & Rueda-Puente, E. O. (2013). Protein Quality Evaluation of Animal Food Proteins by <i>In-Vitro</i> Methodologies. In Food and Nutrition Sciences (Vol. 04, Issue 04, pp. 376–384). Scientific Research Publishing, Inc. https://doi.org/10.4236/fns.2013.44048 DOI: https://doi.org/10.4236/fns.2013.44048

Graciels Caire-Juvera, F. A. V.-O. y M. I. G.-H., -. (2013). Composición de aminoácidos, calificación química y digestibilidad [JB]. In Nutricion Hospitalaria (Vol. 2, pp. 365–371). Arán Ediciones. https://doi.org/10.3305/nh.2013.28.2.6219.

Schaafsma, G. (2005). The Protein Digestibility-Corrected Amino Acid Score (PDCAAS)—A Concept for Describing Protein Quality in Foods and Food Ingredients: A Critical Review. In Journal of AOAC INTERNATIONAL (Vol. 88, Issue 3, pp. 988–994). Oxford University Press (OUP). https://doi.org/10.1093/jaoac/88.3.988 DOI: https://doi.org/10.1093/jaoac/88.3.988

Leushkina, E. V., Donchenko, L. V., & Limareva, N. S. (2021). Study of the chemical composition of quinoa of Russian selection grown in the South of Russia. In IOP Conference Series: Earth and Environmental Science (Vol. 640, Issue 2, p. 022004). IOP Publishing. https://doi.org/10.1088/1755-1315/640/2/022004 DOI: https://doi.org/10.1088/1755-1315/640/2/022004

Chernikov, M. P. (1986). Khimicheskiye metody otsenki kachestva pishchevykh belkov [Chemical methods of evaluating the quality of dietary proteins]. In Voprosypitaniia (Vol. 1, pp. 42–44). Geotar Media Publishing Group.

Hegedüs, M. (1992). Dietary factors influencing protein utilization: a review. In Acta Veterinaria Hungarica (Vol. 40, Issue 3, pp. 133–143). Hungarian Academy of Sciences.

Craddock, J. C., Genoni, A., Strutt, E. F., & Goldman, D. M. (2021). Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with Special Attention to Plant-Based Diets: a Review. In Current Nutrition Reports (Vol. 10, Issue 1, pp. 93–98). Springer Science and Business Media LLC. https://doi.org/10.1007/s13668-020-00348-8 DOI: https://doi.org/10.1007/s13668-020-00348-8

Paszczyk, B. (2022). Cheese and Butter as a Source of Health-Promoting Fatty Acids in the Human Diet. In Animals (Vol. 12, Issue 23, p. 3424). MDPI AG. https://doi.org/10.3390/ani12233424 DOI: https://doi.org/10.3390/ani12233424

Gilroy, D. J., Kauffman, K. W., Hall, R. A., Huang, X., & Chu, F. S. (2000). Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. In Environmental Health Perspectives (Vol. 108, Issue 5, pp. 435–439). Environmental Health Perspectives. https://doi.org/10.1289/ehp.00108435 DOI: https://doi.org/10.1289/ehp.00108435

Belay, A. (2007). Spirulina (Arthrospira). In Spirulina in Human Nutrition and Health (pp. 1–25). CRC Press. https://doi.org/10.1201/9781420052572.ch1 DOI: https://doi.org/10.1201/9781420052572.ch1

Abbas, K. A., Abdelmontaleb, H. S., Hamdy, S. M., & Aït-Kaddour, A. (2021). Physicochemical, Functional, Fatty Acids Profile, Health Lipid Indices, Microstructure and Sensory Characteristics of Walnut-Processed Cheeses. In Foods (Vol. 10, Issue 10, p. 2274). MDPI AG. https://doi.org/10.3390/foods10102274 DOI: https://doi.org/10.3390/foods10102274

Downloads

Published

2023-10-27

How to Cite

Alimardanova, M., Akpanov, Z., & Prosekov, A. (2023). Improving the quality and the technology of processed cheeses. Potravinarstvo Slovak Journal of Food Sciences, 17, 788–800. https://doi.org/10.5219/1911