Comparative characterization of strains of lactic acid bacteria isolated from Kazakhstan mare's milk and koumiss to create probiotic preparation


  • Fatima Sagymbek Almaty Technological University, Faculty of Department of Food Biotechnology, st. Tole bi 100, 050000, Almaty, Kazakhstan, Tel.: +7 701 6383835
  • Tolkyn Abdigaliyeva Almaty Technological University, Faculty of Department of Food Biotechnology, st. Tole bi 100, 050000, Almaty, Kazakhstan, Tel.: +7 702 498333
  • Assiya Serikbaeva Kazakh National Agrarian Research University, Department of Food Technology and Safety, 050010, Almaty, Kazakhstan, Tel.: +7 777 72565375
  • Zubaira Kozhahmetova Kazakh National Agrarian Research University, Department of Microbiology, Virology and Immunology, 050010, Almaty, Kazakhstan, Tel.: +7 777 70547016
  • Zhuldyz Suleimenova , Kazakh National Agrarian Research University, Department of Food Technology and Safety, 050010, Almaty, Kazakhstan, Tel.: +7 707 1555327



mare's milk, koumiss, LAB, probiotic properties


The most widely used probiotics that benefit human and animal health are lactic acid bacteria (LAB) derived from milk and dairy products. Therefore, this study aimed to investigate the probiotic properties of LAB strains isolated from Kazakhstan mare's milk and koumiss (fermented mare’s milk) samples. A total of 24 LAB strains were isolated to test their probiotic properties. Based on analysis of probiotic properties, the strains 3K, 7K, 9K, 10K and 11K were identified by 16S rDNA sequence analysis. According to PCR analysis, three strains (3K, 7K, 9K) were assigned to the species Limosilactobacillus fermentum and the remaining two strains (10K and 11K) were assigned to the species Lacticaseibacillus paracasei. In summary, the high biological potential of the strain Lacticaseibacillus paracasei 10K was identified as having probiotic property, which suggests its possible use as a promising candidate.


Download data is not yet available.


Metrics Loading ...


Wieërs, G., Belkhir, L., Enaud, R., Leclercq, S., Philippart de Foy, J.-M., Dequenne, I., de Timary, P., & Cani, P. D. (2020). How Probiotics Affect the Microbiota. In Frontiers in Cellular and Infection Microbiology (Vol. 9). Frontiers Media SA. DOI:

de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. In Biotechnology Advances (Vol. 36, Issue 8, pp. 2060–2076). Elsevier BV. DOI:

Pophaly, S. D., Chauhan, M., Lule, V., Sarang, P., Tarak, J., Thakur, K., & Tomar, S. K. (2018). Functional Starter Cultures for Fermented Dairy Products. In Microbial Cultures and Enzymes in Dairy Technology (pp. 54–68). IGI Global. DOI:

Charalampopoulos, D., Wang, R., Pandiella, S. S., & Webb, C. (2002). Application of cereals and cereal components in functional foods: a review. In International Journal of Food Microbiology (Vol. 79, Issues 1–2, pp. 131–141). Elsevier BV. DOI:

Rakhmanova, A., Wang, T., Xing, G., Ma, L., Hong, Y., Lu, Y., Xin, L., Xin, W., Zhu, Q., & Lü, X. (2021). Isolation and identification of microorganisms in Kazakhstan koumiss and their application in preparing cow-milk koumiss. In Journal of Dairy Science (Vol. 104, Issue 1, pp. 151–166). American Dairy Science Association. DOI:

Li, Q., Zhang, C., Xilin, T., Ji, M., Meng, X., Zhao, Y., Siqin, B., Zhang, N., & Li, M. (2022). Effects of Koumiss on Intestinal Immune Modulation in Immunosuppressed Rats. In Frontiers in Nutrition (Vol. 9). Frontiers Media SA. DOI:

Ren, S., Chen, A., Tian, Y., Bai, Z., & Wang, C. (2022). Lactobacillus paracasei from koumiss ameliorates diarrhea in mice via tight junctions modulation. In Nutrition (Vol. 98, p. 111584). Elsevier BV. DOI:

Yang, Y., An, H., Zhai, Z., Wang, G., Li, J., & Hao, Y. (2016). Complete genome sequence of Lactobacillus helveticus CAUH18, a potential probiotic strain originated from koumiss. In Journal of Biotechnology (Vol. 224, pp. 18–19). Elsevier BV. DOI:

Yi, L., Dang, Y., Wu, J., Zhang, L., Liu, X., Liu, B., Zhou, Y., & Lu, X. (2016). Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China. In Journal of Dairy Science (Vol. 99, Issue 9, pp. 7002–7015). American Dairy Science Association. DOI:

Rong, J., Zheng, H., Liu, M., Hu, X., Wang, T., Zhang, X., Jin, F., & Wang, L. (2015). Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. In BMC Microbiology (Vol. 15, Issue 1). Springer Science and Business Media LLC. DOI:

Zhang, J., Wang, L., Guo, Z., Sun, Z., Gesudu, Q., Kwok, L., Menghebilige, , & Zhang, H. (2014). 454 pyrosequencing reveals changes in the faecal microbiota of adults consumingLactobacillus caseiZhang. In FEMS Microbiology Ecology (Vol. 88, Issue 3, pp. 612–622). Oxford University Press (OUP). DOI:

GOST 26809.1-2014 Milk and milk products. Acceptance regulations, methods of sampling and sample preparation for testing. Part 1. Milk, dairy, milk compound and milk-contained products.

GOST 33951-2016 Milk and milk products. Methods for determination of the lactic acid bacteria.

Hu, B., Tian, F., Wang, G., Zhang, Q., Zhao, J., Zhang, H., & Chen, W. (2015). Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin. In Letters in Applied Microbiology (Vol. 61, Issue 1, pp. 13–19). Oxford University Press (OUP). DOI:

Vanniyasingam, J., Kapilan, R., & Vasantharuba, S. (2019). Isolation and characterization of potential probiotic lactic acid bacteria isolated from cow milk and milk products. In AGRIEAST: Journal of Agricultural Sciences (Vol. 13, Issue 1, p. 32). Sri Lanka Journals Online (JOL). DOI:

Dzhobulaeva, A. K., Dzhakibaeva, G. T., Kebekbaeva, K. M., Zhaniyazov, J. A., & Alimbetova, A. V. (2015) Application of polymerase chain reaction for identification of collection cultures. In Advances of Modern Natural Science (Vol. 5, pp. 121–125). Russian Publishers Association.

Musaev, A., Sadykova, S., Anambayeva, A., Saizhanova, M., Balkanay, G., & Kolbaev, M. (2021). Mare’s Milk: Composition, its Properties and Uses in Medicine. Archives of Razi Institute, Online First.

Afzaal, M., Saeed, F., Anjum, F., Waris, N., Husaain, M., Ikram, A., Ateeq, H., Muhammad Anjum, F., & Suleria, H. (2021). Nutritional and ethnomedicinal scenario of koumiss: A concurrent review. In Food Science & Nutrition (Vol. 9, Issue 11, pp. 6421–6428). Wiley. DOI:

Jin, Y., Luo, B., Cai, J., Yang, B., Zhang, Y., Tian, F., & Ni, Y. (2021). Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. In Journal of Dairy Science (Vol. 104, Issue 5, pp. 5166–5184). American Dairy Science Association. DOI:

Sanders, M. E., Merenstein, D., Merrifield, C. A., & Hutkins, R. (2018). Probiotics for human use. In Nutrition Bulletin (Vol. 43, Issue 3, pp. 212–225). Wiley. DOI:

Melia, S., Yuherman, Y., Jaswandi, J., & Purwati, E. (2018). Selection of buffalo milk lactic acid bacteria with probiotic potential. In Asian Journal of Pharmaceutical and Clinical Research (Vol. 11, Issue 6, p. 186). Innovare Academic Sciences Pvt Ltd. DOI:

Del Piano, M., Carmagnola, S., Ballarè, M., Sartori, M., Orsello, M., Balzarini, M., Pagliarulo, M., Tari, R., Anderloni, A., Strozzi, G. P., Mogna, L., Sforza, F., & Capurso, L. (2011). Is microencapsulation the future of probiotic preparations? The increased efficacy of gastro-protected probiotics. In Gut Microbes (Vol. 2, Issue 2, pp. 120–123). Informa UK Limited. DOI:

Azat, R., Liu, Y., Li, W., Kayir, A., Lin, D., Zhou, W., & Zheng, X. (2016). Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. In Journal of Zhejiang University-SCIENCE B (Vol. 17, Issue 8, pp. 597–609). Zhejiang University Press. DOI:

Danova, S., Petrov, K., Pavlov, P., & Petrova, P. (2005). Isolation and characterization of Lactobacillus strains involved in koumiss fermentation. In International Journal of Dairy Technology (Vol. 58, Issue 2, pp. 100–105). Wiley. DOI:

Hamad, I., Cardilli, A., Côrte-Real, B. F., Dyczko, A., Vangronsveld, J., & Kleinewietfeld, M. (2022). High-Salt Diet Induces Depletion of Lactic Acid-Producing Bacteria in Murine Gut. In Nutrients (Vol. 14, Issue 6, p. 1171). MDPI AG. DOI:

Padmavathi, T., Bhargavi, R., Priyanka, P. R., Niranjan, N. R., & Pavitra, P. V. (2018). Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. In Journal of Genetic Engineering and Biotechnology (Vol. 16, Issue 2, pp. 357–362). Springer Science and Business Media LLC. DOI:

Kasimin, M. E., Mohd. Faik, A. A., Jani, J., Abbasiliasi, S., B. Ariff, A., & Jawan, R. (2020). Probiotic properties of antimicrobial-producing lactic acid bacteria isolated from dairy products and raw milk of sabah (northern borneo), malaysia. In Malaysian Applied Biology (Vol. 49, Issue 3, pp. 95–106). Persatuan Biologi Gunaan Malaysia. DOI:

Pal, A., & Bhowal, S. (2021). An in vitro comparative analysis of properties of probiotic bacteria present in beverages. In Journal of Advanced Scientific Research (Vol. 12, Isuue 03, pp. 76–81). DOI:

Prabhurajeshwar, C., & Chandrakanth, R., K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. In Biomedical Journal (Vol. 40, pp. 270–283). DOI:

Rzepkowska, A., Zielińska, D., Ołdak, A., & Kołożyn-Krajewska, D. (2017). Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from polish raw fermented meat products. In International Journal of Food Proporties (Vol. 20, pp. 2736–2747). DOI:

Vankerckhoven, V., Huys, G., Vancanneyt, M., Vael, C., Klare, I., Romond, M.-B., Entenza, J. M., Moreillon, P., Wind, R. D., Knol, J., Wiertz, E., Pot, B., Vaughan, E. E., Kahlmeter, G., & Goossens, H. (2008). Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. In Trends in Food Science & Technology (Vol. 19, Issue 2, pp. 102–114). Elsevier BV. DOI:

Guo, H., Pan, L., Li, L., Lu, J., Kwok, L., Menghe, B., Zhang, H., & Zhang, W. (2017). Characterization of Antibiotic Resistance Genes fromLactobacillusIsolated from Traditional Dairy Products. In Journal of Food Science (Vol. 82, Issue 3, pp. 724–730). Wiley. DOI:

Aryantini, N. P. D., Yamasaki, E., Kurazono, H., Sujaya, I. N., Urashima, T., & Fukuda, K. (2016). In vitrosafety assessments and antimicrobial activities ofLactobacillus rhamnosusstrains isolated from a fermented mare’s milk. In Animal Science Journal (Vol. 88, Issue 3, pp. 517–525). Wiley. DOI:

Wu, R., Wang, L., Wang, J., Li, H., Menghe, B., Wu, J., Guo, M., & Zhang, H. (2009). Isolation and preliminary probiotic selection of lactobacilli from koumiss in Inner Mongolia. In Journal of Basic Microbiology (Vol. 49, Issue 3, pp. 318–326). Wiley. DOI:

Pan, D. D., Zeng, X. Q., & Yan, Y. T. (2010). Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. In Journal of the Science of Food and Agriculture (Vol. 91, Issue 3, pp. 512–518). Wiley. DOI:




How to Cite

Sagymbek, F., Abdigaliyeva, T., Serikbaeva, A., Kozhahmetova, Z., & Suleimenova, Z. (2023). Comparative characterization of strains of lactic acid bacteria isolated from Kazakhstan mare’s milk and koumiss to create probiotic preparation. Potravinarstvo Slovak Journal of Food Sciences, 17, 777–787.