Comparative characterization of strains of lactic acid bacteria isolated from Kazakhstan mare's milk and koumiss to create probiotic preparation
DOI:
https://doi.org/10.5219/1906Keywords:
mare's milk, koumiss, LAB, probiotic propertiesAbstract
The most widely used probiotics that benefit human and animal health are lactic acid bacteria (LAB) derived from milk and dairy products. Therefore, this study aimed to investigate the probiotic properties of LAB strains isolated from Kazakhstan mare's milk and koumiss (fermented mare’s milk) samples. A total of 24 LAB strains were isolated to test their probiotic properties. Based on analysis of probiotic properties, the strains 3K, 7K, 9K, 10K and 11K were identified by 16S rDNA sequence analysis. According to PCR analysis, three strains (3K, 7K, 9K) were assigned to the species Limosilactobacillus fermentum and the remaining two strains (10K and 11K) were assigned to the species Lacticaseibacillus paracasei. In summary, the high biological potential of the strain Lacticaseibacillus paracasei 10K was identified as having probiotic property, which suggests its possible use as a promising candidate.
Downloads
Metrics
References
Wieërs, G., Belkhir, L., Enaud, R., Leclercq, S., Philippart de Foy, J.-M., Dequenne, I., de Timary, P., & Cani, P. D. (2020). How Probiotics Affect the Microbiota. In Frontiers in Cellular and Infection Microbiology (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fcimb.2019.00454 DOI: https://doi.org/10.3389/fcimb.2019.00454
de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. In Biotechnology Advances (Vol. 36, Issue 8, pp. 2060–2076). Elsevier BV. https://doi.org/10.1016/j.biotechadv.2018.09.003 DOI: https://doi.org/10.1016/j.biotechadv.2018.09.003
Pophaly, S. D., Chauhan, M., Lule, V., Sarang, P., Tarak, J., Thakur, K., & Tomar, S. K. (2018). Functional Starter Cultures for Fermented Dairy Products. In Microbial Cultures and Enzymes in Dairy Technology (pp. 54–68). IGI Global. https://doi.org/10.4018/978-1-5225-5363-2.ch003 DOI: https://doi.org/10.4018/978-1-5225-5363-2.ch003
Charalampopoulos, D., Wang, R., Pandiella, S. S., & Webb, C. (2002). Application of cereals and cereal components in functional foods: a review. In International Journal of Food Microbiology (Vol. 79, Issues 1–2, pp. 131–141). Elsevier BV. https://doi.org/10.1016/s0168-1605(02)00187-3 DOI: https://doi.org/10.1016/S0168-1605(02)00187-3
Rakhmanova, A., Wang, T., Xing, G., Ma, L., Hong, Y., Lu, Y., Xin, L., Xin, W., Zhu, Q., & Lü, X. (2021). Isolation and identification of microorganisms in Kazakhstan koumiss and their application in preparing cow-milk koumiss. In Journal of Dairy Science (Vol. 104, Issue 1, pp. 151–166). American Dairy Science Association. https://doi.org/10.3168/jds.2020-18527 DOI: https://doi.org/10.3168/jds.2020-18527
Li, Q., Zhang, C., Xilin, T., Ji, M., Meng, X., Zhao, Y., Siqin, B., Zhang, N., & Li, M. (2022). Effects of Koumiss on Intestinal Immune Modulation in Immunosuppressed Rats. In Frontiers in Nutrition (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fnut.2022.765499 DOI: https://doi.org/10.3389/fnut.2022.765499
Ren, S., Chen, A., Tian, Y., Bai, Z., & Wang, C. (2022). Lactobacillus paracasei from koumiss ameliorates diarrhea in mice via tight junctions modulation. In Nutrition (Vol. 98, p. 111584). Elsevier BV. https://doi.org/10.1016/j.nut.2021.111584 DOI: https://doi.org/10.1016/j.nut.2021.111584
Yang, Y., An, H., Zhai, Z., Wang, G., Li, J., & Hao, Y. (2016). Complete genome sequence of Lactobacillus helveticus CAUH18, a potential probiotic strain originated from koumiss. In Journal of Biotechnology (Vol. 224, pp. 18–19). Elsevier BV. https://doi.org/10.1016/j.jbiotec.2016.03.004 DOI: https://doi.org/10.1016/j.jbiotec.2016.03.004
Yi, L., Dang, Y., Wu, J., Zhang, L., Liu, X., Liu, B., Zhou, Y., & Lu, X. (2016). Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China. In Journal of Dairy Science (Vol. 99, Issue 9, pp. 7002–7015). American Dairy Science Association. https://doi.org/10.3168/jds.2016-11166 DOI: https://doi.org/10.3168/jds.2016-11166
Rong, J., Zheng, H., Liu, M., Hu, X., Wang, T., Zhang, X., Jin, F., & Wang, L. (2015). Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. In BMC Microbiology (Vol. 15, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12866-015-0525-2 DOI: https://doi.org/10.1186/s12866-015-0525-2
Zhang, J., Wang, L., Guo, Z., Sun, Z., Gesudu, Q., Kwok, L., Menghebilige, , & Zhang, H. (2014). 454 pyrosequencing reveals changes in the faecal microbiota of adults consumingLactobacillus caseiZhang. In FEMS Microbiology Ecology (Vol. 88, Issue 3, pp. 612–622). Oxford University Press (OUP). https://doi.org/10.1111/1574-6941.12328 DOI: https://doi.org/10.1111/1574-6941.12328
GOST 26809.1-2014 Milk and milk products. Acceptance regulations, methods of sampling and sample preparation for testing. Part 1. Milk, dairy, milk compound and milk-contained products.
GOST 33951-2016 Milk and milk products. Methods for determination of the lactic acid bacteria.
Hu, B., Tian, F., Wang, G., Zhang, Q., Zhao, J., Zhang, H., & Chen, W. (2015). Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin. In Letters in Applied Microbiology (Vol. 61, Issue 1, pp. 13–19). Oxford University Press (OUP). https://doi.org/10.1111/lam.12418 DOI: https://doi.org/10.1111/lam.12418
Vanniyasingam, J., Kapilan, R., & Vasantharuba, S. (2019). Isolation and characterization of potential probiotic lactic acid bacteria isolated from cow milk and milk products. In AGRIEAST: Journal of Agricultural Sciences (Vol. 13, Issue 1, p. 32). Sri Lanka Journals Online (JOL). https://doi.org/10.4038/agrieast.v13i1.62 DOI: https://doi.org/10.4038/agrieast.v13i1.62
Dzhobulaeva, A. K., Dzhakibaeva, G. T., Kebekbaeva, K. M., Zhaniyazov, J. A., & Alimbetova, A. V. (2015) Application of polymerase chain reaction for identification of collection cultures. In Advances of Modern Natural Science (Vol. 5, pp. 121–125). Russian Publishers Association.
Musaev, A., Sadykova, S., Anambayeva, A., Saizhanova, M., Balkanay, G., & Kolbaev, M. (2021). Mare’s Milk: Composition, its Properties and Uses in Medicine. Archives of Razi Institute, Online First. https://doi.org/10.22092/ari.2021.355834.1725
Afzaal, M., Saeed, F., Anjum, F., Waris, N., Husaain, M., Ikram, A., Ateeq, H., Muhammad Anjum, F., & Suleria, H. (2021). Nutritional and ethnomedicinal scenario of koumiss: A concurrent review. In Food Science & Nutrition (Vol. 9, Issue 11, pp. 6421–6428). Wiley. https://doi.org/10.1002/fsn3.2595 DOI: https://doi.org/10.1002/fsn3.2595
Jin, Y., Luo, B., Cai, J., Yang, B., Zhang, Y., Tian, F., & Ni, Y. (2021). Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. In Journal of Dairy Science (Vol. 104, Issue 5, pp. 5166–5184). American Dairy Science Association. https://doi.org/10.3168/jds.2020-19398 DOI: https://doi.org/10.3168/jds.2020-19398
Sanders, M. E., Merenstein, D., Merrifield, C. A., & Hutkins, R. (2018). Probiotics for human use. In Nutrition Bulletin (Vol. 43, Issue 3, pp. 212–225). Wiley. https://doi.org/10.1111/nbu.12334 DOI: https://doi.org/10.1111/nbu.12334
Melia, S., Yuherman, Y., Jaswandi, J., & Purwati, E. (2018). Selection of buffalo milk lactic acid bacteria with probiotic potential. In Asian Journal of Pharmaceutical and Clinical Research (Vol. 11, Issue 6, p. 186). Innovare Academic Sciences Pvt Ltd. https://doi.org/10.22159/ajpcr.2018.v11i6.24809 DOI: https://doi.org/10.22159/ajpcr.2018.v11i6.24809
Del Piano, M., Carmagnola, S., Ballarè, M., Sartori, M., Orsello, M., Balzarini, M., Pagliarulo, M., Tari, R., Anderloni, A., Strozzi, G. P., Mogna, L., Sforza, F., & Capurso, L. (2011). Is microencapsulation the future of probiotic preparations? The increased efficacy of gastro-protected probiotics. In Gut Microbes (Vol. 2, Issue 2, pp. 120–123). Informa UK Limited. https://doi.org/10.4161/gmic.2.2.15784 DOI: https://doi.org/10.4161/gmic.2.2.15784
Azat, R., Liu, Y., Li, W., Kayir, A., Lin, D., Zhou, W., & Zheng, X. (2016). Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. In Journal of Zhejiang University-SCIENCE B (Vol. 17, Issue 8, pp. 597–609). Zhejiang University Press. https://doi.org/10.1631/jzus.b1500250 DOI: https://doi.org/10.1631/jzus.B1500250
Danova, S., Petrov, K., Pavlov, P., & Petrova, P. (2005). Isolation and characterization of Lactobacillus strains involved in koumiss fermentation. In International Journal of Dairy Technology (Vol. 58, Issue 2, pp. 100–105). Wiley. https://doi.org/10.1111/j.1471-0307.2005.00194.x DOI: https://doi.org/10.1111/j.1471-0307.2005.00194.x
Hamad, I., Cardilli, A., Côrte-Real, B. F., Dyczko, A., Vangronsveld, J., & Kleinewietfeld, M. (2022). High-Salt Diet Induces Depletion of Lactic Acid-Producing Bacteria in Murine Gut. In Nutrients (Vol. 14, Issue 6, p. 1171). MDPI AG. https://doi.org/10.3390/nu14061171 DOI: https://doi.org/10.3390/nu14061171
Padmavathi, T., Bhargavi, R., Priyanka, P. R., Niranjan, N. R., & Pavitra, P. V. (2018). Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. In Journal of Genetic Engineering and Biotechnology (Vol. 16, Issue 2, pp. 357–362). Springer Science and Business Media LLC. https://doi.org/10.1016/j.jgeb.2018.03.005 DOI: https://doi.org/10.1016/j.jgeb.2018.03.005
Kasimin, M. E., Mohd. Faik, A. A., Jani, J., Abbasiliasi, S., B. Ariff, A., & Jawan, R. (2020). Probiotic properties of antimicrobial-producing lactic acid bacteria isolated from dairy products and raw milk of sabah (northern borneo), malaysia. In Malaysian Applied Biology (Vol. 49, Issue 3, pp. 95–106). Persatuan Biologi Gunaan Malaysia. https://doi.org/10.55230/mabjournal.v49i3.1580 DOI: https://doi.org/10.55230/mabjournal.v49i3.1580
Pal, A., & Bhowal, S. (2021). An in vitro comparative analysis of properties of probiotic bacteria present in beverages. In Journal of Advanced Scientific Research (Vol. 12, Isuue 03, pp. 76–81). https://doi.org/10.55218/JASR.202112344 DOI: https://doi.org/10.55218/JASR.202112344
Prabhurajeshwar, C., & Chandrakanth, R., K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. In Biomedical Journal (Vol. 40, pp. 270–283). https://doi.org/10.1016/j.bj.2017.06.008 DOI: https://doi.org/10.1016/j.bj.2017.06.008
Rzepkowska, A., Zielińska, D., Ołdak, A., & Kołożyn-Krajewska, D. (2017). Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from polish raw fermented meat products. In International Journal of Food Proporties (Vol. 20, pp. 2736–2747). https://doi.org/10.1080/10942912.2016.1250098 DOI: https://doi.org/10.1080/10942912.2016.1250098
Vankerckhoven, V., Huys, G., Vancanneyt, M., Vael, C., Klare, I., Romond, M.-B., Entenza, J. M., Moreillon, P., Wind, R. D., Knol, J., Wiertz, E., Pot, B., Vaughan, E. E., Kahlmeter, G., & Goossens, H. (2008). Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. In Trends in Food Science & Technology (Vol. 19, Issue 2, pp. 102–114). Elsevier BV. https://doi.org/10.1016/j.tifs.2007.07.013 DOI: https://doi.org/10.1016/j.tifs.2007.07.013
Guo, H., Pan, L., Li, L., Lu, J., Kwok, L., Menghe, B., Zhang, H., & Zhang, W. (2017). Characterization of Antibiotic Resistance Genes fromLactobacillusIsolated from Traditional Dairy Products. In Journal of Food Science (Vol. 82, Issue 3, pp. 724–730). Wiley. https://doi.org/10.1111/1750-3841.13645 DOI: https://doi.org/10.1111/1750-3841.13645
Aryantini, N. P. D., Yamasaki, E., Kurazono, H., Sujaya, I. N., Urashima, T., & Fukuda, K. (2016). In vitrosafety assessments and antimicrobial activities ofLactobacillus rhamnosusstrains isolated from a fermented mare’s milk. In Animal Science Journal (Vol. 88, Issue 3, pp. 517–525). Wiley. https://doi.org/10.1111/asj.12668 DOI: https://doi.org/10.1111/asj.12668
Wu, R., Wang, L., Wang, J., Li, H., Menghe, B., Wu, J., Guo, M., & Zhang, H. (2009). Isolation and preliminary probiotic selection of lactobacilli from koumiss in Inner Mongolia. In Journal of Basic Microbiology (Vol. 49, Issue 3, pp. 318–326). Wiley. https://doi.org/10.1002/jobm.200800047 DOI: https://doi.org/10.1002/jobm.200800047
Pan, D. D., Zeng, X. Q., & Yan, Y. T. (2010). Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. In Journal of the Science of Food and Agriculture (Vol. 91, Issue 3, pp. 512–518). Wiley. https://doi.org/10.1002/jsfa.4214 DOI: https://doi.org/10.1002/jsfa.4214
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.