Thermal performance assessment of an indirect solar dryer: A case study of Bananas


  • Abderrahmane Mendyl ELTE Eötvös Loránd University / Institute of Geography and Earth Sciences / Doctoral School of Environmental Sciences, Department of Meteorology, Egyetem tér 1-3, 1053, H-1117 Budapest, Hungary; Mohammed V University of Rabat, Faculty of Sciences, B., P 1014 Rabat, Morocco
  • Houria Bouzghiba Hungarian University of Agriculture and Life Science, Environmental Doctoral School, Páter Karoly utca 1, 2100, Godollo, Hungary
  • Rachid Tadili Mohammed V University of Rabat, Faculty of Sciences, B., P 1014 Rabat, Morocco
  • Tamás Weidinger ELTE Eötvös Loránd University / Institute of Geography and Earth Sciences / Doctoral School of Environmental Sciences, Department of Meteorology, Egyetem tér 1-3, 1053, H-1117 Budapest, Hungary



indirect solar dryer, solar collector, banana, global irradiance


This study presents a design for an absorber used in a solar air collector for an indirect solar dryer. The absorber comprises two aluminium plates corrugated and joined together to form parallel cylinders, enabling airflow within the collector. This research aims to experimentally examine the drying process of two types of bananas, one from Morocco and the other from abroad, using the designed solar air collector. Additionally, the study aims to investigate the peculiarities of the drying process and the performance of the solar dryer employed. The experiments were conducted by subjecting the bananas to the designed solar air collector, and the evolution of drying was monitored. The initial mass of the bananas used was 631.6 g for the Moroccan banana and 713.6 g for the Export banana. After the drying process, the mass of the Moroccan banana reduced to 77.5 g, while the Export banana reduced to 137.3 g, indicating significant moisture removal. The percentage of the amount of water extracted (Q) from the bananas was found to be 87.7% for the Moroccan banana and 80.8% for the Export banana. These results demonstrate the effectiveness of the corrugated aluminium plate absorber in facilitating the drying process in the solar air collector. The significant reduction in the mass of the bananas and the high percentage of water extraction highlight the efficiency of the solar dryer in removing moisture from the agricultural produce. The findings of this study contribute to the understanding of the drying process of bananas and offer valuable insights for the design and optimization of solar drying systems for agricultural applications.


Download data is not yet available.


Metrics Loading ...


Basunia, M. A., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. In Journal of Food Engineering (Vol. 47, Issue 4, pp. 295–301). Elsevier BV. DOI:

Hegde, V. N., Hosur, V. S., Rathod, S. K., Harsoor, P. A., & Narayana, K. B. (2015). Design, fabrication and performance evaluation of solar dryer for banana. In Energy, Sustainability and Society (Vol. 5, Issue 1). Springer Science and Business Media LLC. DOI:

Nabnean, S., & Nimnuan, P. (2020). Experimental performance of direct forced convection household solar dryer for drying banana. In Case Studies in Thermal Engineering (Vol. 22, p. 100787). Elsevier BV. DOI:

Tiwari, A. (2016). A Review on Solar Drying of Agricultural Produce. In Journal of Food Processing & Technology (Vol. 7, Issue 9). OMICS Publishing Group. DOI:

Çiftçioğlu, G. A., Kadırgan, F., Kadırgan, M. A. N., & Kaynak, G. (2020). Smart agriculture through using cost-effective and high-efficiency solar drying. In Heliyon (Vol. 6, Issue 2, p. e03357). Elsevier BV. DOI:

Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., & Müller, J. (2020). Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. In Journal of Environmental Management (Vol. 268, p. 110730). Elsevier BV. DOI:

VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of solar drying technologies. In Renewable and Sustainable Energy Reviews (Vol. 16, Issue 5, pp. 2652–2670). Elsevier BV. DOI:

Surányi, D. (2017). Fruit drying traditions in Hungary. In International Journal of Horticultural Science (Vol. 23, Issues 1–4). University of Debrecen/ Debreceni Egyetem. DOI:

Santos, F. S. dos, Figueirêdo, R. M. F. de, Queiroz, A. J. de M., & Santos, D. da C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. In Revista Brasileira de Engenharia Agrícola e Ambiental (Vol. 21, Issue 12, pp. 872–877). FapUNIFESP (SciELO). DOI:

SH, G., M, D., & A, Z. (2012). Kinetics of apricot thin layer drying in a mixed and indirect mode solar dryer. In International Journal of Agriculture Sciences (Vol. 4, Issue 6, pp. 262–267). Bioinfo Publications. DOI:

Pruengam, P., Pathaveerat, S., & Pukdeewong, P. (2021). Fabrication and testing of double-sided solar collector dryer for drying banana. In Case Studies in Thermal Engineering (Vol. 27, p. 101335). Elsevier BV. DOI:

Essalhi, H., Tadili, R., & Bargach, M. N. (2017). Conception of a Solar Air Collector for an Indirect Solar Dryer. Pear Drying Test. In Energy Procedia (Vol. 141, pp. 29–33). Elsevier BV. DOI:

López Plaza, B., Fernández Cruz, E., Santurino, C., & Gómez Candela, C. (2021). Nutritional composition and nutritional claims of Canary Islands banana. In Nutrición Hospitalaria. ARAN Ediciones. DOI:

Galán Saúco, V. (2020). Broad overview of the subtropical banana industry. In Acta Horticulturae (Issue 1272, pp. 1–12). International Society for Horticultural Science (ISHS). DOI:

Mendyl, A., Mabasa, B., Bouzghiba, H., & Weidinger, T. (2022). Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco. In Applied Sciences (Vol. 13, Issue 1, p. 320). MDPI AG. DOI:

Abouabdillah, A., Capone, R., El Youssfi, L., Debs, P., Harraq, A., El Bilali, H., el Amrani, M., Bottalico, F., & Driouech, N. (2015). Household food waste in Morocco: An exploratory survey. In Book of Proceedings of the VI International Scientific Agriculture Symposium “Agrosym (pp. 1353–1360).

El Barnossi, A., Moussaid, F., & Iraqi Housseini, A. (2021). Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. In Biotechnology Reports (Vol. 29, p. e00574). Elsevier BV. DOI:

Aguilera, J. M., Chiralt, A., & Fito, P. (2003). Food dehydration and product structure. In Trends in Food Science & Technology (Vol. 14, Issue 10, pp. 432–437). Elsevier BV. DOI:

Ranjha, M. M. A. N., Irfan, S., Nadeem, M., & Mahmood, S. (2020). A Comprehensive Review on Nutritional Value, Medicinal Uses, and Processing of Banana. In Food Reviews International (Vol. 38, Issue 2, pp. 199–225). Informa UK Limited. DOI:

Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. In Renewable Energy (Vol. 29, Issue 8, pp. 1265–1275). Elsevier BV. DOI:

Verma, S. K., Gupta, N. K., & Rakshit, D. (2020). A comprehensive analysis on advances in application of solar collectors considering design, process and working fluid parameters for solar to thermal conversion. In Solar Energy (Vol. 208, pp. 1114–1150). Elsevier BV. DOI:

M.R., N. (2022). Intensification of the Process of Drying Fruits and Vegetables in a Recirculating Solar Dryer. In RA JOURNAL OF APPLIED RESEARCH (Vol. 08, Issue 05). Everant Journals. DOI:

F A Hayatu, & M M Dukku. (2022). Development and performance evaluation of a dual energy source solar dryer for tomatoes. In Global Journal of Engineering and Technology Advances (Vol. 11, Issue 2, pp. 071–086). GSC Online Press. DOI:

Huddar, V. B., Razak, A., Cuce, E., Gadwal, S., Alwetaishi, M., Afzal, A., Saleel, C. A., & Shaik, S. (2022). Thermal Performance Study of Solar Air Dryers for Cashew Kernel: A Comparative Analysis and Modelling Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). In A. Álvarez-Gallegos (Ed.), International Journal of Photoenergy (Vol. 2022, pp. 1–18). Hindawi Limited. DOI:

Ullah, H., Ahmad, S., Thompson, A., (2006). Effect of high humidity and water on storage life and quality of bananas. International Journal of Agriculture & Biology (pakistan), 8(6), 1560–8530. ISSN:1560-8530.

Belessiotis, V., & Delyannis, E. (2011). Solar drying. In Solar Energy (Vol. 85, Issue 8, pp. 1665–1691). Elsevier BV. DOI:

Kimball, B. A., Idso, S. B., & Aase, J. K. (1982). A model of thermal radiation from partly cloudy and overcast skies. In Water Resources Research (Vol. 18, Issue 4, pp. 931–936). American Geophysical Union (AGU). DOI:

Baig, A., Akhter, P., & Mufti, A. (1991). A novel approach to estimate the clear day global radiation. In Renewable Energy (Vol. 1, Issue 1, pp. 119–123). Elsevier BV. DOI:

Mohebbi, M., Shahidi, F., Fathi, M., Ehtiati, A., & Noshad, M. (2011). Prediction of moisture content in pre-osmosed and ultrasounded dried banana using genetic algorithm and neural network. In Food and Bioproducts Processing (Vol. 89, Issue 4, pp. 362–366). Elsevier BV. DOI:

Meteomanz. Retrieved from

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. In Quarterly Journal of the Royal Meteorological Society (Vol. 146, Issue 730, pp. 1999–2049). Wiley. DOI:

Mabasa, B., Lysko, M. D., Tazvinga, H., Zwane, N., & Moloi, S. J. (2021). The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa. In Energies (Vol. 14, Issue 9, p. 2583). MDPI AG. DOI:

Green, M. A., Keevers, M. J., Thomas, I., Lasich, J. B., Emery, K., & King, R. R. (2015). 40% efficient sunlight to electricity conversion. In Progress in Photovoltaics: Research and Applications (Vol. 23, Issue 6, pp. 685–691). Wiley. DOI:

Lan, D., & Green, M. A. (2018). Pathways towards a 50% efficiency spectrum-splitting photovoltaic system: Application of built-in filters and generalization of concept. In Energy Procedia (Vol. 150, pp. 83–86). Elsevier BV. DOI:

F. Holmgren, W., W. Hansen, C., & A. Mikofski, M. (2018). pvlib python: a python package for modeling solar energy systems. In Journal of Open Source Software (Vol. 3, Issue 29, p. 884). The Open Journal. DOI:

Reda, I., & Andreas, A. (2004). Solar position algorithm for solar radiation applications. In Solar Energy (Vol. 76, Issue 5, pp. 577–589). Elsevier BV. DOI:

Singh, D., & Mall, P. (2020). Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (pp. 1–18). Informa UK Limited. DOI:

Bolin, H. R., Salunkhe, D. K., & Lund, D. (1982). Food dehydration by solar energy. In C R C Critical Reviews in Food Science and Nutrition (Vol. 16, Issue 4, pp. 327–354). Informa UK Limited. DOI:

Macedo, L. L., Vimercati, W. C., Araújo, C., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. In Journal of Food Process Engineering (Vol. 43, Issue 9). Wiley. DOI:

ASABE. (2023). American Society of Agricultural and Biological Engineers Standards. ASABE Standard (pp. 351–353).

Jadallah, A., Alsaadi, M., & Hussien, S. (2020). The Hybrid (PVT) Double-Pass System with a Mixed-Mode Solar Dryer for Drying Banana. In Engineering and Technology Journal (Vol. 38, Issue 8, pp. 1214–1225). University of Technology. DOI:

Dandamrongrak, R., Mason, R., & Young, G. (2003). The effect of pretreatments on the drying rate and quality of dried bananas. In International Journal of Food Science and Technology (Vol. 38, Issue 8, pp. 877–882). Wiley. DOI:

Noori, A. W., Royen, M. J., & Haydary, J. (2021). Effect of ambient parameters change on mint leaves solar drying. In Acta Chimica Slovaca (Vol. 14, Issue 1, pp. 14–24). Walter de Gruyter GmbH. DOI:

Borges, S. V., Mancini, M. C., Corrêa, J. L. G., & Leite, J. (2010). Secagem de bananas prata e d’água por convecção forçada. In Ciência e Tecnologia de Alimentos (Vol. 30, Issue 3, pp. 605–612). FapUNIFESP (SciELO). DOI:

Verma, D., Kaushik, N., & Rao, P. S. (2013). Application of High Hydrostatic Pressure as a Pretreatment for Osmotic Dehydration of Banana Slices (Musa cavendishii) Finish-Dried by Dehumidified Air Drying. In Food and Bioprocess Technology (Vol. 7, Issue 5, pp. 1281–1297). Springer Science and Business Media LLC. DOI:

Lingayat, A., & V.P., C. (2021). Numerical investigation on solar air collector and its practical application in the indirect solar dryer for banana chips drying with energy and exergy analysis. In Thermal Science and Engineering Progress (Vol. 26, p. 101077). Elsevier BV. DOI:

Jiang, H., Zhang, M., & Mujumdar, A. S. (2010). Physico-chemical changes during different stages of MFD/FD banana chips. In Journal of Food Engineering (Vol. 101, Issue 2, pp. 140–145). Elsevier BV. DOI:

Sun, D.-W., & Woods, J. L. (1993). The Moisture Content/Relative Humidity Equilibrium Relationship Of Wheat - A Review. In Drying Technology (Vol. 11, Issue 7, pp. 1523–1551). Informa UK Limited. DOI:

Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. In Journal of Food Engineering (Vol. 82, Issue 2, pp. 261–267). Elsevier BV. DOI:




How to Cite

Mendyl, A., Bouzghiba, H., Tadili, R., & Weidinger, T. (2023). Thermal performance assessment of an indirect solar dryer: A case study of Bananas. Potravinarstvo Slovak Journal of Food Sciences, 17, 550–564.