The mathematical model of drying melon pulp by the convective method
DOI:
https://doi.org/10.5219/1788Keywords:
drying, melon, convective drying, phenols, mathematical modellingAbstract
Melon is a dessert loved by many, captivating with its thick aroma and delicate honey taste. The juicy, fragrant pulp is not only delicious but also very useful for dietary purposes, with a therapeutic effect on diseases of the liver and kidneys, anaemia, rheumatism and cardiovascular disorders. This storehouse of vitamins is especially rich in potassium and iron salts, pectins, fibre, easily digestible sugars, proteins, starch and other elements necessary for health. This article presents the results of a study of the Myrzachulskaya melon variety and establishes the optimal parameters for drying the pulp, pre-treating melons with 99.5% ethanol before drying. Twenty drying experiments were carried out, in which the parameters of the operating variables, namely temperature, air velocity and sample size, were varied according to the compiled mathematical processing planning matrix. Drying caused a decrease in biologically active compounds, affecting some antioxidant properties (vitamin C content, total phenol content and antioxidant capacity) of melon pulp. As a result, the optimal parameters were established, at which samples of dried melon pulp showed insignificant losses (up to 1%) in the total content of phenolic compounds, carotenoids and ascorbic acid. The optimal parameters for drying melon fruits are a temperature of 55 °C, a drying time of 11 h and a slice thickness of not more than 0.5 cm.
Downloads
Metrics
References
Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. In Food and Bioprocess Technology (Vol. 8, Issue 7, pp. 1503–1511). Springer Science and Business Media LLC. https://doi.org/10.1007/s11947-015-1519-7 DOI: https://doi.org/10.1007/s11947-015-1519-7
Halliwell, B. (2006). Oxidative stress and cancer: have we moved forward? In Biochemical Journal (Vol. 401, Issue 1, pp. 1–11). Portland Press Ltd. https://doi.org/10.1042/bj20061131 DOI: https://doi.org/10.1042/BJ20061131
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. In Journal of Food Composition and Analysis (Vol. 19, Issues 6–7, pp. 669–675). Elsevier BV. https://doi.org/10.1016/j.jfca.2006.01.003 DOI: https://doi.org/10.1016/j.jfca.2006.01.003
Mozaffarieh, M., Sacu, S., & Wedrich, A. (2003). The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. In Nutrition Journal (Vol. 2, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/1475-2891-2-20 DOI: https://doi.org/10.1186/1475-2891-2-20
Porter, Y. (2012). Antioxidant properties of green broccoli and purple-sprouting broccoli under different cooking conditions. In Bioscience Horizons (Vol. 5, Issue 0, pp. hzs004–hzs004). Oxford University Press (OUP). https://doi.org/10.1093/biohorizons/hzs004 DOI: https://doi.org/10.1093/biohorizons/hzs004
Boadu, V. G., Essuman, E. K., Otoo, G. S., & Bigson, K. (2021). The Impact of Different Drying Techniques on the Physicochemical and Quality Characteristics of Oil Palm Fruit Mesocarp (Elaeis guineensis). In Z.-F. Yan (Ed.), International Journal of Food Science (Vol. 2021, pp. 1–6). Hindawi Limited. https://doi.org/10.1155/2021/2005502 DOI: https://doi.org/10.1155/2021/2005502
Chaves, S. W., Aroucha, E. M., Filho, F. S. P., Medeiros, J. F., Souza, M. S., & Nunes, G. H. (2014). Conservação de melão Cantaloupe cultivado em diferentes doses de N e K. In Horticultura Brasileira (Vol. 32, Issue 4, pp. 468–474). FapUNIFESP (SciELO). https://doi.org/10.1590/s0102-053620140000400016 DOI: https://doi.org/10.1590/S0102-053620140000400016
Roos, Y., & Karel, M. (1991). Phase transitions of mixtures of amorphous polysaccharides and sugars. In Biotechnology Progress (Vol. 7, Issue 1, pp. 49–53). Wiley. https://doi.org/10.1021/bp00007a008 DOI: https://doi.org/10.1021/bp00007a008
Hadi Samimi, A., Akbar, A., & Mohammad Hossein, K. (2017). Comparative quality assessment of different drying procedures for plum fruits (Prunus domestica L.). In Czech Journal of Food Sciences (Vol. 35, Issue No. 5, pp. 449–455). Czech Academy of Agricultural Sciences. https://doi.org/10.17221/440/2016-cjfs DOI: https://doi.org/10.17221/440/2016-CJFS
Iztayev, A., Kulazhanov, T. K., Yakiyayeva, M. A., Zhakatayeva, A. N., & Baibatyrov, T. A. (2021). Method for the safe storage of sugar beets using an ion-ozone mixture [pdf]. In Acta Scientiarum Polonorum Technologia Alimentaria (Vol. 20, Issue 1, pp. 25–35). Uniwersytet Przyrodniczy w Poznaniu (Poznan University of Life Sciences). https://doi.org/10.17306/j.afs.2021.0865 DOI: https://doi.org/10.17306/J.AFS.2021.0865
Lenart, A. (1996). Osmo-Convective Drying of Fruits and Vegetables: Technology and Application. In Drying Technology (Vol. 14, Issue 2, pp. 391–413). Informa UK Limited. https://doi.org/10.1080/07373939608917104 DOI: https://doi.org/10.1080/07373939608917104
Slade, L., Levine, H., Ievolella, J., & Wang, M. (1993). The glassy state phenomenon in applications for the food industry: Application of the food polymer science approach to structure–function relationships of sucrose in cookie and cracker systems. In Journal of the Science of Food and Agriculture (Vol. 63, Issue 2, pp. 133–176). Wiley. https://doi.org/10.1002/jsfa.2740630202 DOI: https://doi.org/10.1002/jsfa.2740630202
Coimbra, L. M. P. de L., Zagmignan, A., Gomes, P. V. V., Araujo, J. F., Santos, G. D. C. dos, Miranda, R. de C. M. de, Salgado, S. M., Andrade, S. A. C., & Nascimento da Silva, L. C. (2022). Optimization of Osmotic Dehydration of Sapodilla (Achras zapota L.). In Foods (Vol. 11, Issue 6, p. 794). MDPI AG. https://doi.org/10.3390/foods11060794 DOI: https://doi.org/10.3390/foods11060794
Spiazzi, E., & Mascheroni, R. (1997). Mass transfer model for osmotic dehydration of fruits and vegetables—I. Development of the simulation model. In Journal of Food Engineering (Vol. 34, Issue 4, pp. 387–410). Elsevier BV. https://doi.org/10.1016/s0260-8774(97)00102-7 DOI: https://doi.org/10.1016/S0260-8774(97)00102-7
Yao, Z., & Le Maguer, M. (1996). Mathematical modelling and simulation of mass transfer in osmotic dehydration processes. Part I: Conceptual and mathematical models. In Journal of Food Engineering (Vol. 29, Issues 3–4, pp. 349–360). Elsevier BV. https://doi.org/10.1016/0260-8774(95)00045-3 DOI: https://doi.org/10.1016/0260-8774(95)00045-3
Trujillo, M., Zapata, A., & Sarache, W. A. (2015). Metodología Integral para el Mejoramiento de la Calidad Mediante la Reducción de la Variabilidad Funcional: Un Caso de Estudio. In Información tecnológica (Vol. 26, Issue 6, pp. 211–221). SciELO Agencia Nacional de Investigacion y Desarrollo (ANID). https://doi.org/10.4067/s0718-07642015000600021 DOI: https://doi.org/10.4067/S0718-07642015000600021
Zhakatayeva, A., Iztayev, A., Muldabekova, B., Yakiyayeva, M. & Hrivna, L. (2020). Scientific security assessment of safety risk of raw sugar products. Periodico Tche Quimica (vol. 17, Issue 34, pp. 352-368). DOI: https://doi.org/10.52571/PTQ.v17.n34.2020.369_P34_pgs_352_368.pdf
López, A., Piqué, M. T., Boatella, J., Parcerisa, J., Romero, A., Ferrá, A., & Garcí, J. (1997). Influence of Drying Conditions on the Hazelnut Quality. III. Browning. In Drying Technology (Vol. 15, Issues 3–4, pp. 989–1002). Informa UK Limited. https://doi.org/10.1080/07373939708917273 DOI: https://doi.org/10.1080/07373939708917273
Cornwell, C. J., & Wrolstad, R. E. (1981). Causes of Browning in Pear Juice Concentrate During Storage. In Journal of Food Science (Vol. 46, Issue 2, pp. 515–518). Wiley. https://doi.org/10.1111/j.1365-2621.1981.tb04899.x DOI: https://doi.org/10.1111/j.1365-2621.1981.tb04899.x
Chou, S. K., Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., & Ho, J. C. (2000). On the Intermittent Drying of an Agricultural Product. In Food and Bioproducts Processing (Vol. 78, Issue 4, pp. 193–203). Elsevier BV. https://doi.org/10.1205/09603080051065296 DOI: https://doi.org/10.1205/09603080051065296
Beveridge, T., & Harrison, J. E. (1984). Nonenzymatic Browning in Pear Juice Concentrate at Elevated Temperatures. In Journal of Food Science (Vol. 49, Issue 5, pp. 1335–1336). Wiley. https://doi.org/10.1111/j.1365-2621.1984.tb14984.x DOI: https://doi.org/10.1111/j.1365-2621.1984.tb14984.x
Cohen, J. S., & Yang, T. C. S. (1995). Progress in food dehydration. In Trends in Food Science & Technology (Vol. 6, Issue 1, pp. 20–25). Elsevier BV. https://doi.org/10.1016/s0924-2244(00)88913-x DOI: https://doi.org/10.1016/S0924-2244(00)88913-X
Mujumdar, A. S., & Law, C. L. (2010). Drying Technology: Trends and Applications in Postharvest Processing. In Food and Bioprocess Technology (Vol. 3, Issue 6, pp. 843–852). Springer Science and Business Media LLC. https://doi.org/10.1007/s11947-010-0353-1 DOI: https://doi.org/10.1007/s11947-010-0353-1
Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. In LWT - Food Science and Technology (Vol. 41, Issue 4, pp. 604–610). Elsevier BV. https://doi.org/10.1016/j.lwt.2007.05.007 DOI: https://doi.org/10.1016/j.lwt.2007.05.007
Dias da Silva, G., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Rupert Brandão, S. C., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. In LWT (Vol. 74, pp. 114–119). Elsevier BV. https://doi.org/10.1016/j.lwt.2016.07.039 DOI: https://doi.org/10.1016/j.lwt.2016.07.039
Rojas, M. L., Silveira, I., & Augusto, P. E. D. (2020). Ultrasound and ethanol pre-treatments to improve convective drying: Drying, rehydration and carotenoid content of pumpkin. In Food and Bioproducts Processing (Vol. 119, pp. 20–30). Elsevier BV. https://doi.org/10.1016/j.fbp.2019.10.008 DOI: https://doi.org/10.1016/j.fbp.2019.10.008
Rojas, M. L., & Augusto, P. E. D. (2018). Ethanol and ultrasound pre-treatments to improve infrared drying of potato slices. In Innovative Food Science & Emerging Technologies (Vol. 49, pp. 65–75). Elsevier BV. https://doi.org/10.1016/j.ifset.2018.08.005 DOI: https://doi.org/10.1016/j.ifset.2018.08.005
Feng, Y., Zhou, C., ElGasim A. Yagoub, A., Sun, Y., Owusu-Ansah, P., Yu, X., Wang, X., Xu, X., Zhang, J., & Ren, Z. (2019). Improvement of the catalytic infrared drying process and quality characteristics of the dried garlic slices by ultrasound-assisted alcohol pretreatment. In LWT (Vol. 116, p. 108577). Elsevier BV. https://doi.org/10.1016/j.lwt.2019.108577 DOI: https://doi.org/10.1016/j.lwt.2019.108577
da Cunha, R. M. C., Brandão, S. C. R., de Medeiros, R. A. B., da Silva Júnior, E. V., Fernandes da Silva, J. H., & Azoubel, P. M. (2020). Effect of ethanol pretreatment on melon convective drying. In Food Chemistry (Vol. 333, p. 127502). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.127502 DOI: https://doi.org/10.1016/j.foodchem.2020.127502
Colucci, D., Fissore, D., Rossello, C., & Carcel, J. A. (2018). On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. In Food Research International (Vol. 106, pp. 580–588). Elsevier BV. https://doi.org/10.1016/j.foodres.2018.01.022 DOI: https://doi.org/10.1016/j.foodres.2018.01.022
Corrêa, J. L. G., Rasia, M. C., Mulet, A., & Cárcel, J. A. (2017). Influence of ultrasound application on both the osmotic pretreatment and subsequent convective drying of pineapple (Ananas comosus). In Innovative Food Science & Emerging Technologies (Vol. 41, pp. 284–291). Elsevier BV. https://doi.org/10.1016/j.ifset.2017.04.002 DOI: https://doi.org/10.1016/j.ifset.2017.04.002
Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. In Food and Bioproducts Processing (Vol. 100, pp. 282–291). Elsevier BV. https://doi.org/10.1016/j.fbp.2016.07.010 DOI: https://doi.org/10.1016/j.fbp.2016.07.010
Kizatova, M., Baikenov, A., Muslimov, N., Baigenzhinov, K., & Yessimova, Z. (2021). Development of a mathematical model for the process of modernization of a melon cleaning machine. In Eastern-European Journal of Enterprise Technologies (Vol. 3, Issue 11 (111), pp. 88–95). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2021.235812 DOI: https://doi.org/10.15587/1729-4061.2021.235812
Silva, J. H. F., Galvão, C. C., Silva, E. S., Cavalcanti, D. E. S., Rocha, O. R. S., Azoubel, P. M., & Benachour, M. (2018). Secagem convectiva de melão (Cucumis melo L.) Com e sem pré-tratamento ultrassonico. In Blucher Chemical Engineering Proceedings. XXII Congresso Brasileiro de Engenharia Química. Editora Blucher. https://doi.org/10.5151/cobeq2018-pt.0752 DOI: https://doi.org/10.5151/cobeq2018-PT.0752
de Medeiros, R. A. B., Barros, Z. M. P., de Carvalho, C. B. O., Neta, E. G. F., Maciel, M. I. S., & Azoubel, P. M. (2016). Influence of dual-stage sugar substitution pretreatment on drying kinetics and quality parameters of mango. In LWT - Food Science and Technology (Vol. 67, pp. 167–173). Elsevier BV. https://doi.org/10.1016/j.lwt.2015.11.049 DOI: https://doi.org/10.1016/j.lwt.2015.11.049
AOAC (2002). Official methods of analysis of association of official analytical chemists (17th ed.). Washington (AOAC, 1115 p.).
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Oxidants and Antioxidants Part A (pp. 152–178). Elsevier. https://doi.org/10.1016/s0076-6879(99)99017-1 DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Rodriguez-Amaya, D. B. (1999). A guide to carotenoid analysis in foods. Washington: International Life Science Institute Press (64 p.).
Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., & García-Pérez, J. V. (2013). Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. In Innovative Food Science & Emerging Technologies (Vol. 17, pp. 120–129). Elsevier BV. https://doi.org/10.1016/j.ifset.2012.11.008 DOI: https://doi.org/10.1016/j.ifset.2012.11.008
Djendoubi Mrad, N., Boudhrioua, N., Kechaou, N., Courtois, F., & Bonazzi, C. (2012). Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. In Food and Bioproducts Processing (Vol. 90, Issue 3, pp. 433–441). Elsevier BV. https://doi.org/10.1016/j.fbp.2011.11.009 DOI: https://doi.org/10.1016/j.fbp.2011.11.009
Dorta, E., Lobo, M. G., & Gonzalez, M. (2011). Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. In Journal of Food Science (Vol. 77, Issue 1, pp. C80–C88). Wiley. https://doi.org/10.1111/j.1750-3841.2011.02477.x DOI: https://doi.org/10.1111/j.1750-3841.2011.02477.x
Mercali, G. D., Schwartz, S., Marczak, L. D. F., Tessaro, I. C., & Sastry, S. (2014). Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating. In Journal of Agricultural and Food Chemistry (Vol. 62, Issue 25, pp. 5865–5870). American Chemical Society (ACS). https://doi.org/10.1021/jf500203u DOI: https://doi.org/10.1021/jf500203u
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.