The potential of Curcuma extract to alleviate muscle damage in amateur soccer players

Authors

  • Ali Rosidi Universitas Muhammadiyah Semarang, Faculty of Nursing and Health Science, Nutrition Department, Jl. Kedungmundu No. 18, 50273, Semarang, Indonesia, Tel.: +62 24 76740296,
  • Annisa Ayuningtyas Universitas Muhammadiyah Semarang, Faculty of Nursing and Health Science, Nutrition Department, Jl. Kedungmundu No. 18, 50273, Semarang, Indonesia, Tel.: +62 24 76740296 https://orcid.org/0000-0002-3975-9722
  • Dr. Nurrahman Universitas Muhammadiyah Semarang, Faculty of Nursing and Health Science, Food Technology Department, Jl. Kedungmundu No. 18, 50273, Semarang, Indonesia, Tel.: +62 24 76740296
  • Luthfia Dewi Universitas Muhammadiyah Semarang, Faculty of Nursing and Health Science, Nutrition Department, Jl. Kedungmundu No. 18, 50273, Semarang, Indonesia; Laboratory of Exercise Biochemistry, University of Taipei, Tian-Mu Campus: No.101, Sec. 2, Zhongcheng Rd., Shilin Dist., 11153, Taipei City, Taiwan, Tel.: +62 24 76740296 https://orcid.org/0000-0001-5241-2240

DOI:

https://doi.org/10.5219/1787

Keywords:

Curcuma extract, inflammation, muscle damage, soccer, exercise

Abstract

Compounds with high bioactive are commonly used as a nutritional approach for accelerating muscle damage recovery after strenuous exercise. There are still inconsistent results of post-exercise antioxidant supplementation on the circulating muscle damage biomarker. This study aimed to examine the effect of post-exercise Curcuma extract supplementation in ice cream on muscle damage and inflammatory markers in amateur soccer players. Male amateur soccer athletes (aged 14 – 18 years) participated in a randomized double-blind placebo-controlled study under two conditions: control group (n = 10) and treatment group (n = 10). The treatment group was treated with Curcuma extract ice cream (250 mg/100 g) for 21 days. Blood samples were drawn before training, considered baseline, and 3 h after training on day 21. The level of creatine kinase, IL-6, haemoglobin (Hb), and lactic acid were quantified. There was a significant decrease in creatine kinase change in the treatment group compared to the control group (p <0.05). No change in IL-6 and Hb levels in the treatment group. Lactic acid decreased by 16.3% from baseline in the treatment group (p <0.05). Curcuma extract ice cream potentiates to ameliorate exercise-induced muscle damage.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Hughes, J. D., Denton, K., R, S. L., Oliver, J. L., & De Ste Croix, M. (2018). The impact of soccer match play on the muscle damage response in youth female athletes. In International journal of sports medicine (Vol. 39, Issue 5, pp. 343–348). Georg Thieme Verlag KG. https://doi.org/10.1055/s-0044-101147 DOI: https://doi.org/10.1055/s-0044-101147

Baird, M. F., Graham, S. M., Baker, J. S., & Bickerstaff, G. F. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. In Journal of nutrition and metabolism (Vol. 2012, pp. 960363–960363). Hindawi. https://doi.org/10.1155/2012/960363 DOI: https://doi.org/10.1155/2012/960363

Souglis, A., Bogdanis, G. C., Giannopoulou, I., Papadopoulos, C., & Apostolidis, N. (2015). Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. In Research in sports medicine (Vol. 23, Issue 1, pp. 59–72). Taylor & Francis. https://doi.org/10.1080/15438627.2014.975814 DOI: https://doi.org/10.1080/15438627.2014.975814

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. In Oncotarget (Vol. 9, Issue 6, pp. 7204-7218). Impact Journals. https://doi.org/10.18632/oncotarget.23208 DOI: https://doi.org/10.18632/oncotarget.23208

Kim, M. B., Kim, C., Song, Y., & Hwang, J. K. (2014). Antihyperglycemic and anti-inflammatory effects of standardized Curcuma xanthorrhiza Roxb. extract and its active compound xanthorrhizol in high-fat diet-induced obese mice. In Evidence-based complementary and alternative medicine (Vol. 2014, pp. 205915). Hindawi. https://doi.org/10.1155/2014/205915 DOI: https://doi.org/10.1155/2014/205915

Nieman, D. C., & Wentz, L. M. (2019). The compelling link between physical activity and the body's defense system. In Journal of sport and health science (Vol. 8, Issue 3, pp. 201–217). Elsevier. https://doi.org/10.1016/j.jshs.2018.09.009 DOI: https://doi.org/10.1016/j.jshs.2018.09.009

Viña, J., Gomez-Cabrera, M. C., Lloret, A., Marquez, R., Miñana, J. B., Pallardó, F. V., & Sastre, J. (2000). Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. In IUBMB Life (Vol. 50, Issue 4–5, pp. 271–277). John Wiley & Sons. https://doi.org/10.1080/713803729 DOI: https://doi.org/10.1080/15216540051080994

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. In Indian journal of clinical biochemistry : IJCB (Vol. 30, Issue 1, pp. 11–26). Springer. https://doi.org/10.1007/s12291-014-0446-0 DOI: https://doi.org/10.1007/s12291-014-0446-0

Russell, M., Benton, D., & Kingsley, M. (2014). Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations. In Journal of athletic training (Vol. 49, Issue 4, pp. 447–453). National Athletic Trainers' Association Inc. https://doi.org/10.4085/1062-6050-49.3.12 DOI: https://doi.org/10.4085/1062-6050-49.3.12

Aguiló, A., Tauler, P., Sureda, A., Cases, N., Tur, J., & Pons, A. (2007). Antioxidant diet supplementation enhances aerobic performance in amateur sportsmen. In Journal of sports sciences (Vol. 25, Issue 11, pp. 1203–1210). David Publishing Company. https://doi.org/10.1080/02640410600951597 DOI: https://doi.org/10.1080/02640410600951597

Priyadarsini, K. (2014). The Chemistry of Curcumin: From Extraction to Therapeutic Agent. In Molecules (Vol. 19, Issue 12, pp. 20091–20112). MDPI AG. https://doi.org/10.3390/molecules191220091 DOI: https://doi.org/10.3390/molecules191220091

Takahashi, M., Suzuki, K., Kim, H. K., Otsuka, Y., Imaizumi, A., Miyashita, M., & Sakamoto, S. (2014). Effects of curcumin supplementation on exercise-induced oxidative stress in humans. In International journal of sports medicine (Vol. 35, Issue 6, pp. 469–475). Georg Thieme Verlag KG. https://doi.org/10.1055/s-0033-1357185 DOI: https://doi.org/10.1055/s-0033-1357185

Dias, K. A., da Conceição, A. R., Oliveira, L. A., Pereira, S. M. S., Paes, S. d. S., Monte, L. F., Sarandy, M. M., Novaes, R. D., Gonçalves, R. V., & Della Lucia, C. M. (2021). Effects of curcumin supplementation on inflammatory markers, muscle damage, and sports performance during acute physical exercise in sedentary individuals. In Oxidative medicine and cellular longevity (Vol. 2021, pp. 9264639–9264639). Hindawi. https://doi.org/10.1155/2021/9264639 DOI: https://doi.org/10.1155/2021/9264639

Goraya, R. K., & Bajwa, U. (2015). Enhancing the functional properties and nutritional quality of ice cream with processed amla (Indian gooseberry). In Journal of Food Science and Technology (Vol. 52, Issue 12, pp. 7861–7871). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-015-1877-1 DOI: https://doi.org/10.1007/s13197-015-1877-1

Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant Potential of Curcumin—A Meta-Analysis of Randomized Clinical Trials. In Antioxidants (Vol. 9, Issue 11, p. 1092). MDPI AG. https://doi.org/10.3390/antiox9111092 DOI: https://doi.org/10.3390/antiox9111092

Manfredi, T. G., Fielding, R. A., O'Reilly, K. P., Meredith, C. N., Lee, H. Y., & Evans, W. J. (1991). Plasma creatine kinase activity and exercise-induced muscle damage in older men. In Medicine and science in sports and exercise (Vol. 23, Issue 9, pp. 1028–1034). Lippincott Williams & Wilkins. DOI: https://doi.org/10.1249/00005768-199109000-00006

de Moura, N. R., Cury-Boaventura, M. F., Santos, V. C., Levada-Pires, A. C., Bortolon, J., Fiamoncini, J., Pithon-Curi, T. C., Curi, R., & Hatanaka, E. (2012). Inflammatory response and neutrophil functions in players after a futsal match. In Journal of strength and conditioning research (Vol. 26, Issue 9, pp. 2507–2514). Lippincott Williams & Wilkins. https://doi.org/10.1519/JSC.0b013e31823f29b5 DOI: https://doi.org/10.1519/JSC.0b013e31823f29b5

White, G. E., & Wells, G. D. (2013). Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. In Extreme physiology & medicine (Vol. 2, Issue 1, pp. 26). BioMed Central. https://doi.org/10.1186/2046-7648-2-26 DOI: https://doi.org/10.1186/2046-7648-2-26

Forcina, L., Cosentino, M., & Musarò, A. (2020). Mechanisms regulating muscle regeneration: insights into the interrelated and time-dependent phases of tissue healing. In Cells (Vol. 9, Issue 5, pp. 1297). MDPI AG. https://doi.org/10.3390/cells9051297 DOI: https://doi.org/10.3390/cells9051297

Yang, C., Jiao, Y., Wei, B., Yang, Z., Wu, J. F., Jensen, J., Jean, W. H., Huang, C. Y., & Kuo, C. H. (2018). Aged cells in human skeletal muscle after resistance exercise. In Aging (Albany NY) (Vol. 10, Issue 6, pp. 1356–1365). Impact Journals. https://doi.org/10.18632/aging.101472 DOI: https://doi.org/10.18632/aging.101472

Tidball, J. G. (2017). Regulation of muscle growth and regeneration by the immune system. In Nature reviews. Immunology (Vol. 17, Issue 3, pp. 165–178). Nature Publishing Group. https://doi.org/10.1038/nri.2016.150 DOI: https://doi.org/10.1038/nri.2016.150

Meckel, Y., Machnai, O., & Eliakim, A. (2009). Relationship among repeated sprint tests, aerobic fitness, and anaerobic fitness in elite adolescent soccer players. In Journal of Strength and Conditioning Research (Vol. 23, Issue 1, pp. 163–169). Lippincott Williams & Wilkins. https://doi.org/10.1519/JSC.0b013e31818b9651 DOI: https://doi.org/10.1519/JSC.0b013e31818b9651

Higgins, M. R., Izadi, A., & Kaviani, M. (2020). Antioxidants and exercise performance: with a focus on vitamin E and C supplementation. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 22, pp. 8452). MDPI AG. https://doi.org/10.3390/ijerph17228452 DOI: https://doi.org/10.3390/ijerph17228452

Gravina, L., Ruiz, F., Diaz, E., Lekue, J. A., Badiola, A., Irazusta, J., & Gil, S. M. (2012). Influence of nutrient intake on antioxidant capacity, muscle damage and white blood cell count in female soccer players. In Journal of the International Society of Sports Nutrition (Vol. 9, Issue 1, pp. 32–32). Taylor & Francis. https://doi.org/10.1186/1550-2783-9-32 DOI: https://doi.org/10.1186/1550-2783-9-32

Jówko, E., Sacharuk, J., Balasinska, B., Wilczak, J., Charmas, M., Ostaszewski, P., & Charmas, R. (2012). Effect of a single dose of green tea polyphenols on the blood markers of exercise-induced oxidative stress in soccer players. In International Journal of Sport Nutrition and Exercise Metabolism (Vol. 22, Issue 6, pp. 486–496). Human Kinetics Publishers. https://doi.org/10.1123/ijsnem.22.6.486 DOI: https://doi.org/10.1123/ijsnem.22.6.486

Zoppi, C. C., Hohl, R., Silva, F. C., Lazarim, F. L., Neto, J. M. A., Stancanneli, M., & Macedo, D. V. (2006). Vitamin C and e supplementation effects in professional soccer players under regular training. In Journal of the International Society of Sports Nutrition (Vol. 3, Issue 2, pp. 37–44). Taylor & Francis. https://doi.org/10.1186/1550-2783-3-2-37 DOI: https://doi.org/10.1186/1550-2783-3-2-37

Steensberg, A. (2003). The role of IL-6 in exercise-induced immune changes and metabolism. In Exercise immunology review (Vol. 9, Issue, pp. 40–47). Human Kinetics Publishers Inc.

Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Muscle-derived interleukin-6: possible biological effects. In The Journal of physiology (Vol. 536, Issue 2, pp. 329–337). Wiley-Blackwell. https://doi.org/10.1111/j.1469-7793.2001.0329c.xd DOI: https://doi.org/10.1111/j.1469-7793.2001.0329c.xd

Gray, S. R., Clifford, M., Lancaster, R., Leggate, M., Davies, M., & Nimmo, M. A. (2009). The response of circulating levels of the interleukin-6/interleukin-6 receptor complex to exercise in young men. In Cytokine (Vol. 47, Issue 2, pp. 98–102). Elsevier. https://doi.org/10.1016/j.cyto.2009.05.011 DOI: https://doi.org/10.1016/j.cyto.2009.05.011

Fischer, C. P. (2006). Interleukin-6 in acute exercise and training: what is the biological relevance? Exercise immunology review (Vol. 12, pp. 6–33). Human Kinetics Publishers Inc.

Mairbäurl, H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. In Frontiers in Physiology (Vol. 4, pp. 332–332). Frontiers Media S.A. https://doi.org/10.3389/fphys.2013.00332 DOI: https://doi.org/10.3389/fphys.2013.00332

Turner, D. L., Hoppeler, H., Noti, C., Gurtner, H. P., Gerber, H., Schena, F., Kayser, B., & Ferretti, G. (1993). Limitations to V̇O2max in humans after blood retransfusion. In Respiration Physiology (Vol. 92, Issue 3, pp. 329–341). Elsevier. https://doi.org/https://doi.org/10.1016/0034-5687(93)90017-5 DOI: https://doi.org/10.1016/0034-5687(93)90017-5

Calbet, J. A. L., Lundby, C., Koskolou, M., & Boushel, R. (2006). Importance of hemoglobin concentration to exercise: Acute manipulations. Respiratory Physiology & Neurobiology (Vol 151, Issue 2, pp. 132-140). https://doi.org/https://doi.org/10.1016/j.resp.2006.01.014 DOI: https://doi.org/10.1016/j.resp.2006.01.014

Pittman, R. N. (2000). Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection. In Acta Physiologica Scandinavica (Vol. 168, Issue 4, pp. 593–602). John Wiley & Sons. https://doi.org/10.1046/j.1365-201x.2000.00710.x DOI: https://doi.org/10.1046/j.1365-201x.2000.00710.x

Alam, T., Rahman, S. M., Alam, T., Habib, N., Umar, B. U., Banna, Q. R., Shirin, L., & Begum, R. (2014). Effect of physical exercise on some hematological parameters in female athletes in Bangladesh. In JNMA; journal of the Nepal Medical Association (Vol. 52, Issue 195, pp. 892–896). Nepal Medical Association. https://doi.org/https://doi.org/10.31729/jnma.2710 DOI: https://doi.org/10.31729/jnma.2710

Yang, Q., Noviana, M., Zhao, Y., Chen, D., & Wang, X. (2019). Effect of curcumin extract against oxidative stress on both structure and deformation capability of red blood cell. In Journal of Biomechanics (Vol. 95, pp. 109301). Elsevier. https://doi.org/10.1016/j.jbiomech.2019.07.045 DOI: https://doi.org/10.1016/j.jbiomech.2019.07.045

Billat, L. V. (1996). Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. In Sports medicine (Vol. 22, Issue 3, pp. 157–175). Springer. https://doi.org/10.2165/00007256-199622030-00003 DOI: https://doi.org/10.2165/00007256-199622030-00003

Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood Lactate Measurements and Analysis during Exercise: A Guide for Clinicians. In Journal of Diabetes Science and Technology (Vol. 1, Issue 4, pp. 558–569). Diabetes Technology Society. https://doi.org/10.1177/193229680700100414 DOI: https://doi.org/10.1177/193229680700100414

Cruz, R. S. d. O., de Aguiar, R. A., Turnes, T., Penteado Dos Santos, R., de Oliveira, M. F. M., & Caputo, F. (2012). Intracellular shuttle: the lactate aerobic metabolism. In The Scientific World Journal (Vol. 2012, pp. 420984-420984). Hindawi. https://doi.org/10.1100/2012/420984 DOI: https://doi.org/10.1100/2012/420984

Chang, C.-C., Chen, C.-W., Owaga, E., Lee, W.-T., Liu, T.-N., & Hsieh, R.-H. (2020). Mangosteen concentrate drink supplementation promotes antioxidant status and lactate clearance in rats after exercise. In Nutrients (Vol. 12, Issue 5, pp. 1447). MDPI AG. https://www.mdpi.com/2072-6643/12/5/1447 DOI: https://doi.org/10.3390/nu12051447

Yu, S.-h., Huang, H.-Y., Korivi, M., Hsu, M.-F., Huang, C.-Y., Hou, C.-W., Chen, C.-Y., Kao, C.-L., Lee, R.-P., Lee, S.-D., & Kuo, C. H. (2012). Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles. In Journal of the International Society of Sports Nutrition (Vol. 9, Issue, pp. 23–23). Taylor & Francis. https://doi.org/10.1186/1550-2783-9-23 DOI: https://doi.org/10.1186/1550-2783-9-23

Lee, T. X. Y., Wu, J., Jean, W. H., Condello, G., Alkhatib, A., Hsieh, C. C., Hsieh, Y. W., Huang, C. Y., & Kuo, C. H. (2021). Reduced stem cell aging in exercised human skeletal muscle is enhanced by ginsenoside Rg1. In Aging (Albany NY) (Vol. 13, Issue 12, pp. 16567–16576). Impact Journals. https://doi.org/10.18632/aging.203176 DOI: https://doi.org/10.18632/aging.203176

Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., & Ramirez-Tortosa, M. (2016). Curcumin and health. In Molecules (Vol. 21, Issue 3, pp. 264). MDPI AG. https://doi.org/10.3390/molecules21030264 DOI: https://doi.org/10.3390/molecules21030264

Downloads

Published

2022-09-14

How to Cite

Rosidi, A., Ayuningtyas, A., Nurrahman, & Dewi, L. (2022). The potential of Curcuma extract to alleviate muscle damage in amateur soccer players. Potravinarstvo Slovak Journal of Food Sciences, 16, 636–644. https://doi.org/10.5219/1787