Development of a scientific concept of industrial storage systems for environmentally safe apples

Authors

  • Albina Alekseevna Varivoda Kuban State Agrarian University named after I. T. Trubilin, Kalinina Street, 13, 350044, Krasnodar, Russia, Tel.:+79054014833
  • Elena Valentinovna Svetlakova Stavropol State Agrarian University, Zootekhnicheskiy Avenue, 9, 355017, Stavropol, Russia, Tel.:+79187732899
  • Irina Vladimirovna Ziruk Saraton State Agrarian University, Teatralnaya Square, 1, 410012, Saratov, Russia, Tel.:+79169793128
  • Inna Sergeevna Kirichenko Moscow State University of Technologies and Management, Zemlyanoy Val Street, 73, 109004, Moscow, Russia, Tel.:+79054675425 https://orcid.org/0000-0002-8293-3984
  • Olga Yurievna Kolosova Technological Institute of Service – Branch of the Don State Technical University in Stavropol, Kulakova Avenue, 41/1., 355000, Stavropol, Russia, Tel.:+79187778824
  • Sergey Nikolaevich Povetkin North Caucasus Federal University, Pushkina Street, 1, 355009, Stavropol, Russia, Tel.:+79183500889 https://orcid.org/0000-0002-8293-3984
  • Bogdan Olegovich Ivakhnenko North Caucasus Federal University, Pushkina Street, 1, 355009, Stavropol, Russia, Tel.:+79895673085 https://orcid.org/0000-0001-9321-550X

DOI:

https://doi.org/10.5219/1785

Keywords:

apple, storage, gas environment, closed loop, bioactive coatings, bactericidal packaging

Abstract

The research project has developed and justified the storage modes of apples in a modified gas environment by creating an isolated "closed loop" of high-pressure polyethylene; the expediency of creating highly efficient technologies for storing fresh fruits in a controlled atmosphere, in bioactive bactericidal packages and by creating microfilm on the surface of fruits has been confirmed. The prospects of using a progressive method of storing fruits in a modified gas atmosphere by creating an isolated "closed circuit" in a separate refrigerating chamber without using expensive equipment (in normal and subnormal gas environments) are proved. New technologies have been developed for storing apple fruits susceptible to infectious and physiological diseases based on improved storage methods with minimal losses. The consumption rates of Phytosporin-M for the surface treatment of fruits were determined and optimized to control the intensity of biochemical and microbiological processes during storage. The modes and technologies of post-harvest fruit processing with the Phytosporin-M biopreparation have been substantiated.

Downloads

Download data is not yet available.

References

Vasylyshyna, E. (2016). Influence of freezing and storing cherry fruit on its nutritional value. In Acta Scientiarum Polonorum Technologia Alimentaria (Vol. 15, Issue 2, pp. 145–150). Uniwersytet Przyrodniczy w Poznaniu (Poznan University of Life Sciences). https://doi.org/10.17306/j.afs.2016.2.14

Siddiqui, S. A., Blinov, A. V., Serov, A. V., Gvozdenko, A. A., Kravtsov, A. A., Nagdalian, A. A., Raffa, V. V., Maglakelidze, D. G., Blinova, A. A., Kobina, A. V., Golik, A. B., & Ibrahim, S. A. (2021). Effect of Selenium Nanoparticles on Germination of Hordéum Vulgáre Barley Seeds. In Coatings (Vol. 11, Issue 7, p. 862). MDPI AG. https://doi.org/10.3390/coatings11070862

Piskov, S., Timchenko, L., Rzhepakovsky, I., Avanesyan, S., Bondareva, N., Sizonenko, M., & Areshidze, D. (2019). Effect of pre-treatment conditions on the antiatherogenic potential of freeze-dried oyster mushrooms. In Foods and Raw Materials (pp. 375–386). Kemerovo State University. https://doi.org/10.21603/2308-4057-2019-2-375-386

Bogonosova, I. A., Kenijz, N. V., Zaitseva, T. N., Artemova, E. N., Kulikov, D. A., & Barsukova, N. V. (2020). Development of functional products from vegetables for schoolchildren’s nutrition. In IOP Conference Series: Earth and Environmental Science (Vol. 613, Issue 1, p. 012019). IOP Publishing. https://doi.org/10.1088/1755-1315/613/1/012019

Nesterenko A. A., Koshchaev A. G., Zabashta N. N., Omarov R. S., & Shlykov S. N. (2019). Basics of the production of protein-fat emulsions based on vegetable raw materials. In Indo American journal of pharmaceutical sciences (Vol. 6, Issue 03, pp. 6337–6346), CSK Publications.

Sadovoy, V. V., Selimov, M. A., Shchedrina, T. V., & Nagdalian, A. A. (2017). Nutritional supplement for control of diabetes. In Journal of Excipients and Food Chemicals (Vol. 8, Issue 2, pp 31–38) IPEC-Americas.

Profeta, A., Siddiqui, S. A., Smetana, S., Hossaini, S. M., Heinz, V., & Kircher, C. (2021). The impact of Corona pandemic on consumer’s food consumption. In Journal of Consumer Protection and Food Safety (Vol. 16, Issue 4, pp. 305–314). Springer Science and Business Media LLC. https://doi.org/10.1007/s00003-021-01341-1

Chmyrev, V. P., Polutina, T. N., Moiseev, A. V., Oboturova, N. P., Kolesnikov, R. O., Baklanov, I. S., & Baklanova, O. A. (2022). Analysis of the state of food safety in the russian federation. In Journal of Hygienic Engineering and Design (Vol. 38, pp. 111–118). Consulting and Training Center KEY.

Silveira, A. C., Araneda, C., Hinojosa, A., & Escalona, V. H. (2014). Effect of non-conventional modified atmosphere packaging on fresh cut watercress (Nasturtium officinale R. Br.) quality. In Postharvest Biology and Technology (Vol. 92, pp. 114–120). Elsevier BV. https://doi.org/10.1016/j.postharvbio.2013.12.012

Serrano, M., & Valero, D. (2017). Application of Polyamines to Maintain Functional Properties in Stored Fruits. In Methods in Molecular Biology (pp. 449–458). Springer New York. https://doi.org/10.1007/978-1-4939-7398-9_37

Juhnevica-Radenkova, K., Radenkovs, V., Kundzins, K., & Seglina, D. (2018). Effect of ozone treatment on the microstructure, chemical composition and sensory quality of apple fruits. In Food Science and Technology International (Vol. 25, Issue 3, pp. 252–267). SAGE Publications. https://doi.org/10.1177/1082013218815285

Weber, A., Thewes, F. R., Anese, R. de O., Both, V., Pavanello, E. P., & Brackmann, A. (2017). Dynamic controlled atmosphere (DCA): interaction between DCA methods and 1-methylcyclopropene on ‘Fuji Suprema’ apple quality. In Food Chemistry (Vol. 235, pp. 136–144). Elsevier BV. https://doi.org/10.1016/j.foodchem.2017.05.047

Ramírez-Acosta, S., Arias-Borrego, A., Gómez-Ariza, J. L., & García-Barrera, T. (2018). Metabolomic study of bioactive compounds in strawberries preserved under controlled atmosphere based on GC-MS and DI-ESI-QqQ-TOF-MS. In Phytochemical Analysis (Vol. 30, Issue 2, pp. 198–207). Wiley. https://doi.org/10.1002/pca.2805

Wood, R. M., Thewes, F. R., Reynaud, M., Kittemann, D., Sautter, C. K., Wünsche, J. N., & Neuwald, D. A. (2022). Apple fruit recovery from anoxia under controlled atmosphere storage. In Food Chemistry (Vol. 371, p. 131152). Elsevier BV. https://doi.org/10.1016/j.foodchem.2021.131152

Finnegan, E., Mahajan, P. V., O’Connell, M., Francis, G. A., & O’Beirne, D. (2013). Modelling respiration in fresh-cut pineapple and prediction of gas permeability needs for optimal modified atmosphere packaging. In Postharvest Biology and Technology (Vol. 79, pp. 47–53). Elsevier BV. https://doi.org/10.1016/j.postharvbio.2012.12.015

Piskov, S., Timchenko, L., Grimm, W.-D., Rzhepakovsky, I., Avanesyan, S., Sizonenko, M., & Kurchenko, V. (2020). Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). In Foods (Vol. 9, Issue 2, p. 160). MDPI AG. https://doi.org/10.3390/foods9020160

Selcuk, N., & Erkan, M. (2015). The effects of modified and palliflex controlled atmosphere storage on postharvest quality and composition of ‘Istanbul’ medlar fruit. In Postharvest Biology and Technology (Vol. 99, pp. 9–19). Elsevier BV. https://doi.org/10.1016/j.postharvbio.2014.07.004

Rzhepakovsky, I. V., Areshidze, D. A., Avanesyan, S. S., Grimm, W. D., Filatova, N. V., Kalinin, A. V., Kochergin, S. G., Kozlova, M. A., Kurchenko, V. P., Sizonenko, M. N., Terentiev, A. A., Timchenko, L. D., Trigub, M. M., Nagdalian, A. A., & Piskov, S. I. (2022). Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. In Molecules (Vol. 27, Issue 3, p. 762). MDPI AG. https://doi.org/10.3390/molecules27030762

Phan, M. A. T., Paterson, J., Bucknall, M., & Arcot, J. (2017). Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. In Critical Reviews in Food Science and Nutrition (Vol. 58, Issue 8, pp. 1310–1329). Informa UK Limited. https://doi.org/10.1080/10408398.2016.1254595

Corpas, F. J., Freschi, L., Rodríguez-Ruiz, M., Mioto, P. T., González-Gordo, S., & Palma, J. M. (2018). Nitro-oxidative metabolism during fruit ripening. In Journal of Experimental Botany (Vol. 69, Issue 14, pp. 3449–3463). Oxford University Press (OUP). https://doi.org/10.1093/jxb/erx453

Ho, Q. T., Verboven, P., Verlinden, B. E., Lammertyn, J., Vandewalle, S., & Nicolaï, B. M. (2008). A Continuum Model for Metabolic Gas Exchange in Pear Fruit. In J. Banga (Ed.), PLoS Computational Biology (Vol. 4, Issue 3, p. e1000023). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pcbi.1000023

Romero, I., Domínguez, I., Doménech‐Carbó, A., Gavara, R., Escribano, M. I., Merodio, C., & Sanchez‐Ballesta, M. T. (2019). Effect of high levels of CO 2 on the electrochemical behavior and the enzymatic and non‐enzymatic antioxidant systems in black and white table grapes stored at 0 °C. In Journal of the Science of Food and Agriculture (Vol. 99, Issue 15, pp. 6859–6867). Wiley. https://doi.org/10.1002/jsfa.9971

Barabanov, P. V., Gerasimov, A. V., Blinov, A. V., Kravtsov, A. A., & Kravtsov, V. A. (2018). Influence of nanosilver on the efficiency of Pisum sativum crops germination. In Ecotoxicology and Environmental Safety (Vol. 147, pp. 715–719). Elsevier BV. https://doi.org/10.1016/j.ecoenv.2017.09.024

Nadeem, M., Mushtaq, M., Chughtai, M. F. J., Khaliq, A., Imran, M., Gondal, T. A., Shariati, M. A., Nesterenko, A., & Kulikov, D. (2021). Nutritional and Phenolic Antioxidant Properties of Pakistani Wheat Varieties as Influenced by Planting Period and Variety. In AGRIVITA Journal of Agricultural Science (Vol. 43, Issue 1). Agrivita, Journal of Agricultural Science (AJAS). https://doi.org/10.17503/agrivita.v43i1.2274

Cheng, Y., Liu, L., Zhao, G., Shen, C., Yan, H., Guan, J., & Yang, K. (2015). The effects of modified atmosphere packaging on core browning and the expression patterns of PPO and PAL genes in ‘Yali’ pears during cold storage. In LWT - Food Science and Technology (Vol. 60, Issue 2, pp. 1243–1248). Elsevier BV. https://doi.org/10.1016/j.lwt.2014.09.005

Selcuk, N., & Erkan, M. (2014). Changes in antioxidant activity and postharvest quality of sweet pomegranates cv. Hicrannar under modified atmosphere packaging. In Postharvest Biology and Technology (Vol. 92, pp. 29–36). Elsevier BV. https://doi.org/10.1016/j.postharvbio.2014.01.007

Sedova, E.N., Ogoltsovoy, T.P. (1999). Program and methodology of variety study of fruit, berry and nut crops. VNIISPK. Orel, VNIISPK Publishing House, 608 p.

GOST 8756.1-79. Canned food products. Methods for determining organoleptic parameters, net weight and mass fraction of components. Retrieved from https://docs.cntd.ru/document/1200022618.

GOST 28562-90. Fruit and vegetable processing products. A refractometric method for determining soluble solids. Retrieved from https://docs.cntd.ru/document/1200022799.

GOST 8756.13-87. Fruit and vegetable products. Methods for determination of sugars. Retrieved from https://docs.cntd.ru/document/1200022639.

GOST 25555.0-82. Fruit and vegetable products. Methods for determination of titratable acidity. Retrieved from https://docs.cntd.ru/document/1200022766.

GOST 24556-89. Products of fruits and vegetables processing. Methods for determination of vitamin C. Retrieved from https://docs.cntd.ru/document/1200022765.

GOST 29059-91. Fruit and vegetable processing products. Titrimetric method for the determination of pectin substances. Retrieved from https://docs.cntd.ru/document/1200022903.

Fruit and vegetable processing products. Methods of analysis. Retrieved from https://docs.cntd.ru/document/1200144956.

GOST 34314-2017. Fresh apples for retail. Specifications. Rerieved from https://docs.cntd.ru/document/556348922.

Siddiqui, S. A., Ahmad, A., Siddiqui, A. A., & Chaturvedi, P. (2021). Stability Analysis of a Cantilever Structure using ANSYS and MATLAB. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). IEEE. https://doi.org/10.1109/iciem51511.2021.9445357

Camen, D, Beinşan, C, Nicolae, I., Renata, S., Doncean, A., & Radu, S. (2021). Research regarding the influence of storage conditions in quality of some apple varieties. In Journal of Horticulture, Forestry and Biotechnology (Vol. 15, pp. 184–186). Banat's University of Agricultural Sciences and Veterinary Medicine.

Angelovič, M., Krištof, K., Jobbágy, J., Findura, P., & Križan, M. (2018). The effect of conditions and storage time on course of moisture and temperature of maize grains. In A. Szeląg-Sikora (Ed.), BIO Web of Conferences (Vol. 10, p. 02001). EDP Sciences. https://doi.org/10.1051/bioconf/20181002001

Melnyk, O., Drozd, O., & Melnyk, I. (2018). Storage and Quality of Apples ‘Reinette Simirenko’, Depending on the Dose of Post-Harvest Treatment with Ethylene Inhibitor 1-MCP. In Journal of Horticultural Research (Vol. 26, Issue 2, pp. 95–102). Walter de Gruyter GmbH. https://doi.org/10.2478/johr-2018-0020

Jones, J. D., Hulme, A. C., & Wooltorton, L. S. C. (1965). The respiration climacteric in apple fruits. biochemical changes occurring during the development oe the climacteric in eruit detached erom the tree. In New Phytologist (Vol. 64, Issue 1, pp. 158–167). Wiley. https://doi.org/10.1111/j.1469-8137.1965.tb05384.x

Li, L., Peters, T., Zhang, Q., Zhang, J., & Huang, D. (2014). Modeling Apple Surface Temperature Dynamics Based on Weather Data. In Sensors (Vol. 14, Issue 11, pp. 20217–20234). MDPI AG. https://doi.org/10.3390/s141120217

Calegario, F. F., Cosso, R. G., Almeida, F. V., Vercesi, A. E., & Jardim, W. F. (2001). Determination of the respiration rate of tomato fruit using flow analysis. In Postharvest Biology and Technology (Vol. 22, Issue 3, pp. 249–256). Elsevier BV. https://doi.org/10.1016/s0925-5214(01)00096-5

Prichko, T., Ulyanovskaya, E., & Droficheva, N. (2020). Evaluation of biochemical indicators of apple fruits quality for the complex selection of the valuable source material for breeding. In E. Egorov, I. Ilina, & N. Zaporozhets (Eds.), BIO Web of Conferences (Vol. 25, p. 02019). EDP Sciences. https://doi.org/10.1051/bioconf/20202502019

Cervantes, L., Ariza, M. T., Miranda, L., Lozano, D., Medina, J. J., Soria, C., & Martínez-Ferri, E. (2020). Stability of Fruit Quality Traits of Different Strawberry Varieties under Variable Environmental Conditions. In Agronomy (Vol. 10, Issue 9, p. 1242). MDPI AG. https://doi.org/10.3390/agronomy10091242

Stewart, G. (2017). The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. In Fermentation (Vol. 3, Issue 4, p. 63). MDPI AG. https://doi.org/10.3390/fermentation3040063

Boeckx, J., Pols, S., Hertog, M. L. A. T. M., & Nicolaï, B. M. (2019). Regulation of the Central Carbon Metabolism in Apple Fruit Exposed to Postharvest Low-Oxygen Stress. In Frontiers in Plant Science (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fpls.2019.01384

Sapei, L., & Hwa, L. (2014). Study on the Kinetics of Vitamin C Degradation in Fresh Strawberry Juices. In Procedia Chemistry (Vol. 9, pp. 62–68). Elsevier BV. https://doi.org/10.1016/j.proche.2014.05.008

Nikitin, A. L., & Makarkina, M. A. (2021). Some indicators of the quality and cold storage of the fruit of new scab immune columnar apple cultivars. In IOP Conference Series: Earth and Environmental Science (Vol. 640, Issue 6, p. 062013). IOP Publishing. https://doi.org/10.1088/1755-1315/640/6/062013

Babich, O., Dyshlyuk, L., Sukhikh, S., Prosekov, A., Ivanova, S., Pavsky, V., Chaplygina, T., & Kriger, O. (2019). Effects of Biopreservatives Combined with Modified Atmosphere Packaging on the Quality of Apples and Tomatoes. In Polish Journal of Food and Nutrition Sciences (Vol. 69, Issue 3, pp. 289–296). Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences. https://doi.org/10.31883/pjfns/110564

Butkeviciute, A., Viskelis, J., Liaudanskas, M., Viskelis, P., Bobinas, C., & Janulis, V. (2021). Variation of Triterpenes in Apples Stored in a Controlled Atmosphere. In Molecules (Vol. 26, Issue 12, p. 3639). MDPI AG. https://doi.org/10.3390/molecules26123639

Thewes, F. R., Brackmann, A., Both, V., Weber, A., Anese, R. de O., Ferrão, T. dos S., & Wagner, R. (2017). The different impacts of dynamic controlled atmosphere and controlled atmosphere storage in the quality attributes of ‘Fuji Suprema’ apples. In Postharvest Biology and Technology (Vol. 130, pp. 7–20). Elsevier BV. https://doi.org/10.1016/j.postharvbio.2017.04.003

Mditshwa, A., Fawole, O. A., & Opara, U. L. (2018). Recent developments on dynamic controlled atmosphere storage of apples—A review. In Food Packaging and Shelf Life (Vol. 16, pp. 59–68). Elsevier BV. https://doi.org/10.1016/j.fpsl.2018.01.011

Dobrzański, B., Rabcewicz, J., & Rybczyński, R. (2006). Handling of apple: transport techniques and efficiency vibration, damage and bruising texture, firmness and quality. B. Dobrzański Institute of Agrophysics Polish Academy of Sciences. (pp. 33–177)

Hoang, N. T. T., Golding, J. B., & Wilkes, M. A. (2011). The effect of postharvest 1-MCP treatment and storage atmosphere on ‘Cripps Pink’ apple phenolics and antioxidant activity. In Food Chemistry (Vol. 127, Issue 3, pp. 1249–1256). Elsevier BV. https://doi.org/10.1016/j.foodchem.2011.01.052

Shuttleworth, L. A. (2021). Alternative disease management strategies for organic apple production in the United Kingdom. In CABI Agriculture and Bioscience (Vol. 2, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s43170-021-00054-7

Kwon, D., Kim, S., Kim, Y., Son, M., Kim, K., An, D., & Kim, B. (2015). An Empirical Assessment of the Economic Damage Caused by Apple Marssonina Blotch and Pear Scab Outbreaks in Korea. In Sustainability (Vol. 7, Issue 12, pp. 16588–16598). MDPI AG. https://doi.org/10.3390/su71215836

Gvozdenko, A. A., Siddiqui, S. A., Blinov, A. V., Golik, A. B., Nagdalian, A. A., Maglakelidze, D. G., Statsenko, E. N., Pirogov, M. A., Blinova, A. A., Sizonenko, M. N., Simonov, A. N., Zhukov, R. B., Kolesnikov, R. O., & Ibrahim, S. A. (2022). Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. In Scientific Reports (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-022-16878-w

Amit, S. K., Uddin, Md. M., Rahman, R., Islam, S. M. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. In Agriculture & Food Security (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s40066-017-0130-8

Li, X., Li, W., Jiang, Y., Ding, Y., Yun, J., Tang, Y., & Zhang, P. (2011). Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. In International Journal of Food Science & Technology (Vol. 46, Issue 9, pp. 1947–1955). Wiley. https://doi.org/10.1111/j.1365-2621.2011.02706.x

Dulta, K., Koşarsoy Ağçeli, G., Thakur, A., Singh, S., Chauhan, P., & Chauhan, P. K. (2022). Development of Alginate-Chitosan Based Coating Enriched with ZnO Nanoparticles for Increasing the Shelf Life of Orange Fruits (Citrus sinensis L.). In Journal of Polymers and the Environment (Vol. 30, Issue 8, pp. 3293–3306). Springer Science and Business Media LLC. https://doi.org/10.1007/s10924-022-02411-7

Bugatti, V., Cefola, M., Montemurro, N., Palumbo, M., Quintieri, L., Pace, B., & Gorrasi, G. (2020). Combined Effect of Active Packaging of Polyethylene Filled with a Nano-Carrier of Salicylate and Modified Atmosphere to Improve the Shelf Life of Fresh Blueberries. In Nanomaterials (Vol. 10, Issue 12, p. 2513). MDPI AG. https://doi.org/10.3390/nano10122513

Downloads

Published

2022-09-14

How to Cite

Varivoda, A. A., Svetlakova, E. V., Ziruk, I. V., Kirichenko, I. S., Kolosova, O. Y., Povetkin, S. N., & Ivakhnenko, B. O. (2022). Development of a scientific concept of industrial storage systems for environmentally safe apples. Potravinarstvo Slovak Journal of Food Sciences, 16, 622–635. https://doi.org/10.5219/1785