The extrusion process of poly-cereal mixtures: study and calculation of the main parameters
DOI:
https://doi.org/10.5219/1756Keywords:
calculation, extrusion, extrudate, poly-cereal, technological parametersAbstract
Theoretical prerequisites for the extrusion of bulk components for the production of high-readiness products have been developed, which formed the basis for calculating and optimizing the main technological parameters of the extrusion process. It has been experimentally confirmed: firstly, the design parameters of the extruder and the initial humidity of the poly-cereal mixture have the greatest influence on the melt pressure of the product; secondly, the geometric characteristics of the working body, the frequency (speed) of the screw rotation and the pressure of the product maximally affect the temperature in the pre-matrix zone of the extruder. It was found that an increase in the rotation speed of the working organ (screw) from 80 to 250 min-1 leads to the highest value of the optimization criterion – the energy value of a poly-cereal food product of a high degree of readiness, respectively, for the poly-cereal mixture Fitness – 332.34 kcal and the poly-cereal mixture Health –
334.09 kcal.
Downloads
Metrics
References
Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2015). Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. In Critical Reviews in Food Science and Nutrition (Vol. 56, Issue 3, pp. 445–473). Informa UK Limited. https://doi.org/10.1080/10408398.2013.779568 DOI: https://doi.org/10.1080/10408398.2013.779568
Aluwi, N. A., Gu, B., Dhumal, G. S., Medina‐Meza, I. G., Murphy, K. M., & Ganjyal, G. M. (2016). Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing. In Journal of Food Science (Vol. 81, Issue 12). Wiley. https://doi.org/10.1111/1750-3841.13512 DOI: https://doi.org/10.1111/1750-3841.13512
Beck, S.M., Knoerzer, K., Foerster, M., Mayo, S., Philipp, C., & Arcot, J. (2018). Low moisture extrusion of pea protein and pea fibre fortified rice starch blends. In Journal of Food Engineering (Vol. 231, pp. 61–71). Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2018.03.004 DOI: https://doi.org/10.1016/j.jfoodeng.2018.03.004
Bouvier, J., & Campanella, O. H. (2014). Extrusion Processing Technology. Wiley. https://doi.org/10.1002/9781118541685 DOI: https://doi.org/10.1002/9781118541685
Bostandzhiyan, S. A., & Stolin, A. M. (1965). Techenie nen'yutonovskoj zhidkosti mezhdu dvumya parallel'nymi ploskostyami. In Mekhanika (Vol. 1, pp. 185–188). Izv. AN SSSR. (in Russian)
Demsky, A. B., Boriskin, M. A., & Tamarov, E. V. (1990). Spravochnik oborudovaniya dlya proizvodstva muki i krupy. Agropromizdat. (in Russian)
Della Valle, G., Berzin, F., & Vergnes, B. (2016). Extrusion processing of main commercial legume pulses. In Advances in Food Extrusion Technology (pp. 225–252). https://doi.org/10.1201/b11286-14 DOI: https://doi.org/10.1201/b11286-14
Karshatov, L. P., Polishchuk, V. Yu., & Zubkova, T. M. (2000). Modelirovanie processa ekstrudirovaniya v odnoshnekovyh pressuyushchih mekhanizmah. In TTekhnika v sel'skom hozyajstve (Vol. 6, pp. 12–14). (in Russian)
Kowalski, R. J., Morris, C. F., & Ganjyal, G. M. (2015). Waxy soft white wheat: extrusion characteristics and thermal and rheological properties. In Cereal Chemistry (Vol. 92, Issue 2, pp. 145–153). Cereals & Grains Association. https://doi.org/10.1094/CCHEM-03-14-0039-R DOI: https://doi.org/10.1094/CCHEM-03-14-0039-R
Kristiawan, M., Chaunier, L., Della Valle, G., Ndiaye, A., & Vergnes, B. (2016). Modeling of starchy melts expansion by extrusion. In Trends in Food Science and Technology (Vol. 48, pp. 13–26). Elsevier BV. https://doi.org/10.1016/j.tifs.2015.11.004 DOI: https://doi.org/10.1016/j.tifs.2015.11.004
Kristiawan, M., Della Valle, G., Kansou, K., Ndiaye, A., & Vergnes, B., (2019). Validation and use for product optimization of a phenomenological model of starch foods expansion by extrusion. In Journal of Food Engineering (Vol. 246, pp. 160–178). Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2018.11.006 DOI: https://doi.org/10.1016/j.jfoodeng.2018.11.006
Li, C., Kowalski, R. J., Li, L., & Ganjyal, G. M. (2017). Extrusion expansion characteristics of samples of select varieties of whole yellow and green dry pea flours. In Cereal Chemistry (Vol. 94, Issue 3, pp. 385–391). Cereals & Grains Association. https://doi.org/10.1094/CCHEM-04-16-0079-R DOI: https://doi.org/10.1094/CCHEM-04-16-0079-R
Machikhin, Yu.A., Zurabishvili, G. G., & Panfilova, S. N. (1991). Sovremennoe oborudovanie v obrabotke pishchevyh materialov davleniem. Rosvuznauka, pp. 308 (in Russian)
Orlov, A. I., & Podgornova, N. M. (1990). Proizvodstvo kombikormov s primeneniem ekstruzionnoj tekhnologii. Obzornaya informaciya CNIIITEI. In Kombikormovaya promyshlennost' (pp. 53). (in Russia)
Ospanov, A. A., Gaceu, L., Timurbekova, A., Muslimov, N., & Jumabekova, G. (2014). Innovative technologies of grain crops processing. Infomarket.
Ospanov, A. A., Timurbekova, A. K., & Almaganbetova, A. T. (2021). Scientific justification of the co-extruded foodstuffs preparing method. In The Journal of Almaty Technological University (Issue 4, pp. 47–53). Almaty Technological University JSC. https://doi.org/10.48184/2304-568x-2020-4-47-53 DOI: https://doi.org/10.48184/2304-568X-2020-4-47-53
Ostrikov, A. N., Shakhov, S. V., Ospanov, A. A., Muslimov, N. Zh., Timurbekova, A. K., Jumabekova, G. B., & Matevey, Y. Z. (2018). Mathematical modeling of product melt flow in the molding channel of an extruding machine with meat filling feeding. In Journal of Food Process Engineering (Vol. 41, Issue 8, pp. e12874). Wiley. https://doi.org/10.1111/jfpe.12874 DOI: https://doi.org/10.1111/jfpe.12874
Ostrikov, A. N., Ospanov, A. A., Vasilenko, V. N., Muslimov, N. Zh., Timurbekova, A. K., & Jumabekova, G. B. (2019). Melt flow of biopolymer through the cavities of an extruder die: Mathematical modelling. In Mathematical Biosciences and Engineering (Vol. 16, Issue 4, pp. 2875–2905). American Institute of Mathematical Sciences (AIMS). https://doi.org/10.3934/mbe.2019142 DOI: https://doi.org/10.3934/mbe.2019142
Panfilov, V. A., & Urakov, O. A. (1996). Tekhnologicheskie linii pishchevyh proizvodstv. Pishchevaya promyshlennost' (in Russia)
Rudas, P. G. (1998). Razrabotka ekstruzionnoj tekhnologii polucheniya novyh vidov i sspecial'nyhform pishchevyh produktov na osnove zernovogo ssyr'ya. [Doctoral dissertation, Moskva University]. Moskva. (in Russia)
Sayanjali, S., Ying, D., Sanguansri, L., Buckow, R., Augustin, M. A., & Gras, S. L. (2017). The effect of extrusion on the functional properties of oat fibre. In LWT (Vol. 84, pp. 106–113). Elsevier BV. https://doi.org/10.1016/j.lwt.2017.05.025 DOI: https://doi.org/10.1016/j.lwt.2017.05.025
Zubkova, T. M., Lukyanova, A. A., & Nasyrov, A. S. (2002). Opredelenie skorosti proskal'zyvaniya ekstrudiruemogo materiala po dnu shnekovogo kanala. In Vestnik Orenburgskogo gosudarstvennogo universiteta. OGU (Vol. 7, pp. 92). Orenburg State University. (in Russia)
Zubkova, T. M., Abdrafikov, R. N., & Musienko, D. A. (2002). Uchet haraktera dvizheniya materiala v kanale shneka pri matematicheskom modelirovanii ekstrudirovaniya rastitel'nogo syr'ya. In Vestnik Orenburgskogo gosudarstvennogo universiteta. In OSU (Vol. 5, pp. 195). Orenburg State University (in Russia)
Yacu, W. A. (2012). Chapter 2. Extruder selection, design and operation for different food applications. In: Maskan, M., Altan, A. (Eds.), Advances in Food Extrusion Technology. CRC Press. DOI: https://doi.org/10.1201/b11286-3
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.