Acclimatization of fish to the higher calcium levels in the water environment
DOI:
https://doi.org/10.5219/1732Keywords:
Cyprinus carpio L., Ca2 concentration, water environment, regulation, diuresis, excretionAbstract
It is established that calcium concentration changes (variations) in the water environment significantly influence its intake and distribution in tissues and organs of hydrobionts. The decrease in calcium concentration in water from
100 to 60 mg.L-1 significantly reduces its content in fish liver. In the gills glandular apparatus of fish acclimated to the environment with lower calcium level (in comparison with control one), its concentration on the first day of the acclimation period slightly exceeded the initial level, thus testifying to its possible excretion of endogenous calcium by gills. The increase of calcium excretion through the renal and digestive systems in fish acclimates to the higher water level, and specific changes in phosphates excretion dynamics accompany oral intake. Long keeping fish in water with 100 mg.L-1 calcium is accompanied by the increase of total phosphorus in urine (by 2 – 2.5 times), and its day excretion increases by 1.9 – 2.4 times. During fish acclimation to higher calcium levels in the water environment, the excretion of total phosphorus with faecal matter increases. The increase of calcium in the water environment to 100 mg.L-1 leads to a temporary increase in total phosphorus excretion with faecal issues. The rise in cation concentration to 200 mg.L-1 increases significantly during long-time fish stay in such an environment.
Downloads
Metrics
References
Ahmad, S. M., Shah, F. A., Bhat, F. A., Bhat, J. I. A., & Balkhi, M. H. (2011). Thermal adaptability and disease association in common carp (Cyprinus carpio communis) acclimated to different (four) temperatures. In Journal of Thermal Biology (Vol. 36, Issue 8, pp. 492–497). Elsevier BV. https://doi.org/10.1016/j.jtherbio.2011.08.007 DOI: https://doi.org/10.1016/j.jtherbio.2011.08.007
Buda, Cs., Dey, I., & Farkas, T. (1996). Role of membrane lipids in temperature acclimatization of carp. In Archiv für Tierernaehrung (Vol. 49, Issue 1, pp. 61–62). Informa UK Limited. https://doi.org/10.1080/17450399609381864 DOI: https://doi.org/10.1080/17450399609381864
Dahlhoff, E. P. (2004). Biochemical Indicators of Stress and Metabolism: Applications for Marine Ecological Studies. In Annual Review of Physiology (Vol. 66, Issue 1, pp. 183–207). Annual Reviews. https://doi.org/10.1146/annurev.physiol.66.032102.114509 DOI: https://doi.org/10.1146/annurev.physiol.66.032102.114509
David, M., Mushigeri, S. B., Shivakumar, R., & Philip, G. H. (2004). Response of Cyprinus carpio (Linn) to sublethal concentration of cypermethrin: alterations in protein metabolic profiles. In Chemosphere (Vol. 56, Issue 4, pp. 347–352). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2004.02.024 DOI: https://doi.org/10.1016/j.chemosphere.2004.02.024
Fiedler, B., & Scheiner-Bobis, G. (1996). Transmembrane Topology of α- and β-Subunits of Na+,K+-ATPase Derived from β-Galactosidase Fusion Proteins Expressed in Yeast. In Journal of Biological Chemistry (Vol. 271, Issue 46, pp. 29312–29320). Elsevier BV. https://doi.org/10.1074/jbc.271.46.29312 DOI: https://doi.org/10.1074/jbc.271.46.29312
Ghosh, T. K., Chauhan, Y. H., & Mandal, R. N. (2019). Growth performance of Labeo bata (Hamilton, 1822) in freshwater and its acclimatization in brackish water with betaine as feed additive. In Aquaculture (Vol. 501, pp. 128–134). Elsevier BV. https://doi.org/10.1016/j.aquaculture.2018.11.020 DOI: https://doi.org/10.1016/j.aquaculture.2018.11.020
Grynevych, N., Sliusarenko, A., Dyman, T., Sliusarenko, S., Gutyj, B., Kukhtyn, M., Hunchak, V., & Kushnir, V. (2018). Etiology and histopathological alterations in some body organs of juvenile rainbow trout Oncorhynchus mykiss (Walbaum, 1792) at nitrite poisoning. In Ukrainian Journal of Ecology (Vol. 8, Issue 1, pp. 402–408). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/2018_228 DOI: https://doi.org/10.15421/2018_228
Hanna, S. M., Thompson, M. J., Dahab, M. F., Williams, R. E., & Dvorak, B. I. (2018). Benchmarking the Energy Intensity of Small Water Resource Recovery Facilities. In Water Environment Research (Vol. 90, Issue 8, pp. 738–747). Wiley. https://doi.org/10.2175/106143017x15131012153176 DOI: https://doi.org/10.2175/106143017X15131012153176
Hudiyash, Yu., Prychepa, M., Potrokhov, A., Zin’kovskiy, O., Gorbatyuk, L., Kovalenko, Ju., & Medovnyk, D. (2020). The effect of environmental conditions of some lakes of the city of Kiev on ichthyofauna condition. In Ribogospodarsʹka nauka Ukraіni. (Issue 1(51), pp. 28–43). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka). https://doi.org/10.15407/fsu2020.01.028 DOI: https://doi.org/10.15407/fsu2020.01.028
Jesus, T. F., Rosa, I. C., Repolho, T., Lopes, A. R., Pimentel, M. S., Almeida-Val, V. M. F., Coelho, M. M., & Rosa, R. (2018). Different ecophysiological responses of freshwater fish to warming and acidification. In Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology (Vol. 216, pp. 34–41). Elsevier BV. https://doi.org/10.1016/j.cbpa.2017.11.007 DOI: https://doi.org/10.1016/j.cbpa.2017.11.007
Ježek, P., & Hlavatá, L. (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. In The International Journal of Biochemistry & Cell Biology (Vol. 37, Issue 12, pp. 2478–2503). Elsevier BV. https://doi.org/10.1016/j.biocel.2005.05.013 DOI: https://doi.org/10.1016/j.biocel.2005.05.013
Kaloyianni, M., Feidantsis, K., Nteli, I., Stergiou, P., Tsoulia, T., Dimitriadi, A., Antonopoulou, E., & Bobori, D. (2019). Biochemical and molecular responses of cyprinids in two Mediterranean lacustrine ecosystems: Opportunities for ecological assessment and biomonitoring. In Aquatic Toxicology (Vol. 211, pp. 105–115). Elsevier BV. https://doi.org/10.1016/j.aquatox.2019.03.021 DOI: https://doi.org/10.1016/j.aquatox.2019.03.021
Kausel, G., Vera, T., Valenzuela, G., Lopez, M., Romero, A., Muller, M., & Figueroa, J. (2010). At least two expressed genes for transcription factors Pitx2 and Rpx are present in common carp and are upregulated during winter acclimatization. In General and Comparative Endocrinology (Vol. 169, Issue 3, pp. 250–257). Elsevier BV. https://doi.org/10.1016/j.ygcen.2010.09.006 DOI: https://doi.org/10.1016/j.ygcen.2010.09.006
Kofonov, A., Potrokhov, O., & Hrynevych, N. (2020). Changes in the biochemical status of common carp juveniles (Cyprinus carpio L.) exposed to ammonium chloride and potassium phosphate. In Ukrainian Journal of Ecology (Vol. 10, Issue 4, pp. 137–147). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/2020_181 DOI: https://doi.org/10.15421/2020_181
Kovalenko, Ju., Shlapak, O., Potrokhov, A., & Zin’kovskiy, O. (2019). Effect of antropogenic pollution on physiological and biochemical parameters of fish and composition of their parasitocenoses. In Ribogospodarsʹka nauka Ukraïni. (Issue 3(49), pp. 72–88). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka). https://doi.org/10.15407/fsu2019.03.072 DOI: https://doi.org/10.15407/fsu2019.03.072
Lall, S. P., & Kaushik, S. J. (2021). Nutrition and Metabolism of Minerals in Fish. In Animals (Vol. 11, Issue 9, p. 2711). MDPI AG. https://doi.org/10.3390/ani11092711 DOI: https://doi.org/10.3390/ani11092711
Liebel, S., Tomotake, M. E. M., & Oliveira-ribeiro, C. A. (2013). Fish histopathology as biomarker to evaluate water quality. In Ecotoxicology and Environmental Contamination (Vol. 8, Issue 2, pp. 9–15). Ecototoxicology and Environmental Contamination. https://doi.org/10.5132/eec.2013.02.002 DOI: https://doi.org/10.5132/eec.2013.02.002
Martseniuk, V. M., Potrokhov, O. S., & Zinkovskiy, O. G. (2017). Physiological-Biochemical Peculiarities of Adaptation of Perch and Common Carp to Elevated Water Temperature. In Hydrobiological Journal (Vol. 53, Issue 6, pp. 60–67). Begell House. https://doi.org/10.1615/hydrobj.v53.i6.60 DOI: https://doi.org/10.1615/HydrobJ.v53.i6.60
Martseniuk, V. M., Potrokhov, O. S., & Zinkovskiy, O. G. (2018). Energy Metabolism in Organs and Tissues of Perch Perca fluviatilis under Changes of Water Temperature. In Hydrobiological Journal (Vol. 54, Issue 4, pp. 85–94). Begell House. https://doi.org/10.1615/hydrobj.v54.i4.90 DOI: https://doi.org/10.1615/HydrobJ.v54.i4.90
Nardocci, G., Simonet, N. G., Navarro, C., Längst, G., & Alvarez, M. (2016). Differential enrichment of TTF-I and Tip5 in the T-like promoter structures of the rDNA contribute to the epigenetic response of Cyprinus carpio during environmental adaptation. In Biochemistry and Cell Biology (Vol. 94, Issue 4, pp. 315–321). Canadian Science Publishing. https://doi.org/10.1139/bcb-2016-0015 DOI: https://doi.org/10.1139/bcb-2016-0015
Pinkina, T., Zymaroieva, A., Matkovska, S., Svitelskyi, M., Ishchuk, O., & Fediuchka, M. (2019). Trophic characteristics of Lymnaea stagnalis (Mollusca: Gastropoda: Lymnaeidae) in toxic environment. In Ekológia (Bratislava) (Vol. 38, Issue 3, pp. 292–300). Walter de Gruyter GmbH. https://doi.org/10.2478/eko-2019-0022 DOI: https://doi.org/10.2478/eko-2019-0022
Poulsen, H., Khandelia, H., Morth, J. P., Bublitz, M., Mouritsen, O. G., Egebjerg, J., & Nissen, P. (2010). Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase. In Nature (Vol. 467, Issue 7311, pp. 99–102). Springer Science and Business Media LLC. https://doi.org/10.1038/nature09309 DOI: https://doi.org/10.1038/nature09309
Prichepa, M., Potrokhov, A., & Zinkovskyi, O. (2017). The features of biochemical parameters change in different ecological groups of fish under conditions of anthropogenic pressure. In Biolohichni systemy (Vol. 9, Issue 1, pp. 39–43). Yuriy Fedkovych Chernivtsi National University. https://doi.org/10.31861/biosystems2017.01.039 DOI: https://doi.org/10.31861/biosystems2017.01.039
Prychepa, M. V., Potrokhov, O. S., & Zin’kovskiy, O. G. (2019). Peculiarities of Biochemical Response of Fish to Anthropogenic Load under Conditions of Urbanization. In Hydrobiological Journal (Vol. 55, Issue 3, pp. 44–52). Begell House. https://doi.org/10.1615/hydrobj.v55.i3.50 DOI: https://doi.org/10.1615/HydrobJ.v55.i3.50
Prychepa, M., Hrynevych, N., Kovalenko, Yu., Vodianitskyi, O., Svitelskyi, M., Khomiak, O., Prysiazhniuk, N., Ishchuk, O., Sliusarenko, A., Kunovskii, J., Mihalskiy, O., Heiko, L., Trofymchuk, A., Gutyj, B., & Levkivska, N. (2021). “Diversity of aquatic animals in water bodies Opechen’ (Dnipro floodplain, Ukraine)”. In Ukrainian Journal of Ecology (Vol. 11, Issue 3, pp. 285–291). Oles Honchar Dnipropetrovsk National University. https://doi:10.15421/2021_173
Prychepa, M., Hrynevych, N., Martseniuk, V., Potrokhov, О., Vodianitskyi, O., Khomiak, O., Rud, O., Kytsokon, L., Sliusarenko, A., Dunaievska, O., Gutyj, B., Pukalo, P., Honcharenko, V., Yevtukh, L., Bozhyk, L., Prus, V., Makhorin, H. (2021). “Rudd (Scardinius Erythrophthalmus l., 1758) as a bioindicator of anthropogenic pollution in freshwater bodies”. In Ukrainian Journal of Ecology (Vol. 11, Issue 2, pp. 253–260). Oles Honchar Dnipropetrovsk National University. https://doi:10.15421/2021_108
Sinha, A. K., Liew, H. J., Diricx, M., Kumar, V., Darras, V. M., Blust, R., & De Boeck, G. (2012). Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carassius auratus L.). In Aquatic Toxicology (Vols. 114–115, pp. 153–164). Elsevier BV. https://doi.org/10.1016/j.aquatox.2012.02.027 DOI: https://doi.org/10.1016/j.aquatox.2012.02.027
Smart, G. (1976). The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). In Journal of Fish Biology (Vol. 8, Issue 6, pp. 471–475). Wiley. https://doi.org/10.1111/j.1095-8649.1976.tb03990.x DOI: https://doi.org/10.1111/j.1095-8649.1976.tb03990.x
Solé, M., Rodríguez, S., Papiol, V., Maynou, F., & Cartes, J. E. (2009). Xenobiotic metabolism markers in marine fish with different trophic strategies and their relationship to ecological variables. In Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology (Vol. 149, Issue 1, pp. 83–89). Elsevier BV. https://doi.org/10.1016/j.cbpc.2008.07.008 DOI: https://doi.org/10.1016/j.cbpc.2008.07.008
Solomatina, V. D., Pinkina, T. V., Svitelskyi, M. M., & Feduchka, M. I. (2019). Changes in calcium and phosphorus metabolism in fish with their warm-water growing. In Water bioresources and aquaculture (Vol. 1, pp. 51–62). Kherson State Agricultural University. https://doi.org/10.32851/wba.2019.1.5 DOI: https://doi.org/10.32851/wba.2019.1.5
Souza, M. M., Gross, S., Boyle, R. T., & Lieberman, M. (2000). Na+/K+-ATPase inhibition during cardiac myocyte swelling: involvement of intracellular pH and Ca2+. In Molecular and Cellular Biochemistry (Vol. 210, Issue 1/2, pp. 173–183). Springer Science and Business Media LLC. https://doi.org/10.1023/a:1007154412805 DOI: https://doi.org/10.1023/A:1007154412805
Strauch, S., Bahr, J., Baßmann, B., Bischoff, A., Oster, M., Wasenitz, B., & Palm, H. (2019). Effects of Ortho-Phosphate on Growth Performance, Welfare and Product Quality of Juvenile African Catfish (Clarias gariepinus). In Fishes (Vol. 4, Issue 1, p. 3). MDPI AG. https://doi.org/10.3390/fishes4010003 DOI: https://doi.org/10.3390/fishes4010003
Therien, A. G., & Blostein, R. (2000). Mechanisms of sodium pump regulation. In American Journal of Physiology-Cell Physiology (Vol. 279, Issue 3, pp. 541–566). American Physiological Society. https://doi.org/10.1152/ajpcell.2000.279.3.c541 DOI: https://doi.org/10.1152/ajpcell.2000.279.3.C541
Van Bussel, C. G. J., Mahlmann, L., Kroeckel, S., Schroeder, J. P., & Schulz, C. (2013). The effect of high ortho-phosphate water levels on growth, feed intake, nutrient utilization and health status of juvenile turbot (Psetta maxima) reared in intensive recirculating aquaculture systems (RAS). In Aquacultural Engineering (Vol. 57, pp. 63–70). Elsevier BV. https://doi.org/10.1016/j.aquaeng.2013.08.003 DOI: https://doi.org/10.1016/j.aquaeng.2013.08.003
Van der Meer, D. L. M., van den Thillart, G. E. E. J. M., Witte, F., de Bakker, M. A. G., Besser, J., Richardson, M. K., Spaink, H. P., Leito, J. T. D., & Bagowski, C. P. (2005). Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. In American Journal of Physiology-Regulatory, Integrative and Comparative Physiology (Vol. 289, Issue 5, pp. 1512–1519). American Physiological Society. https://doi.org/10.1152/ajpregu.00089.2005 DOI: https://doi.org/10.1152/ajpregu.00089.2005
Viarengo, A., Lowe, D., Bolognesi, C., Fabbri, E., & Koehler, A. (2007). The use of biomarkers in biomonitoring: A 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. In Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology (Vol. 146, Issue 3, pp. 281–300). Elsevier BV. https://doi.org/10.1016/j.cbpc.2007.04.011 DOI: https://doi.org/10.1016/j.cbpc.2007.04.011
Vodianitskiy, O. M., Potrokhov, O. S., & Zinkovskiy, O. G. (2017). Embryonic and Early Postembryonic Development of Carp and Activity of Enzymes of the Energy and Plastic Metabolism under Impact of Water Temperature Fluctuations. In Hydrobiological Journal (Vol. 53, Issue 1, pp. 78–86). Begell House. https://doi.org/10.1615/hydrobj.v53.i1.80 DOI: https://doi.org/10.1615/HydrobJ.v53.i1.80
Vodianitskyi, O., Potrokhov, O., Hrynevych, N., Khomiak, O., Khudiyash, Y., Prysiazhniuk, N., Rud, O., Sliusarenko, A., Zagoruy, L., Gutyj, B., Dushka, V., Maxym, V., Dadak, O., & Liublin, V. (2020). “Effect of reserviour temperature and oxygen conditions on the activity of Na-K pump in embrios and larvae of perch, roach, and ruffe”. In Ukrainian Journal of Ecology (Vol. 10, Issue 2, pp. 184–189). Oles Honchar Dnipropetrovsk National University. https://doi:10.15421/2020_83
Vodyanitskyi, A., Potrohov, A., Zinkovskyi, O., & Prychepa, M. (2017). Changes in activity of Na+/K+–ATP-ase in embryos carp fish under different oxygen and temperature of reservoir regime. In Visnyk of Lviv University. Biological series (Issue 75, pp. 14–22). Ivan Franko National University of Lviv. https://doi.org/10.30970/vlubs.2017.75.02 DOI: https://doi.org/10.30970/vlubs.2017.75.02
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. In Hydrological Sciences Journal (Vol. 54, Issue 1, pp. 101–123). Informa UK Limited. https://doi.org/10.1623/hysj.54.1.101 DOI: https://doi.org/10.1623/hysj.54.1.101
Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 365, Issue 1549, pp. 2093–2106). The Royal Society. https://doi.org/10.1098/rstb.2010.0055 DOI: https://doi.org/10.1098/rstb.2010.0055
Yang, Y., Cao, Z.-D., & Fu, S.-J. (2015). Variations in temperature acclimation effects on glycogen storage, hypoxia tolerance and swimming performance with seasonal acclimatization in juvenile Chinese crucian carp. In Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology (Vol. 185, pp. 16–23). Elsevier BV. https://doi.org/10.1016/j.cbpa.2015.03.009 DOI: https://doi.org/10.1016/j.cbpa.2015.03.009
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.