The effect of soil biostimulant Agriful on the selected quantitative and qualitative parameters of carrot (Daucus carota subsp. sativus (Hoffm.) Arcang.)


  • Júlia Fabianová the Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Institute of Horticulture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic, Tel.: +421917373587
  • Alena Andrejiová the Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Department of Vegetable Production, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.:+421 37641 4247
  • Miroslav Šlosár the Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Institute of Horticulture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376414261
  • Alžbeta Hegedűsová the Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Institute of Horticulture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376414712
  • Lenka Benzová the Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Institute of Horticulture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia



biostimulant, carrot, yield, carotenoid, refractometric dry matter


The research task was focused on an important type of root vegetable – carrot (Daucus carota L.), cultivar ´Romance F1´ (family: Apiaceae). The main goal was to verify the application of soil biostimulant Agriful (based on humic and fulvic acids) and its impact on the yield potential and quality of carrot roots. Nowadays, it is the common need to intensify and increase crop production because of the growing human population and look for environmentally friendly cultivation methods. In general, biostimulants are biologically based products and their purpose is to stimulate the natural nutritional processes in cultivated crops. In the realized experiment, Agriful (treatment of 5 L/300 L water/ha) was applied twice per vegetation period by spraying over the pivot. The increase of average root weight after the application of Agriful was found, concretely about +4.47% compared to the control variant. The higher root weight after Agriful application resulted in a higher total yield of carrot about +2.84% compared to the control variant. The quality of consumable parts of carrots were evaluated based on the classification of roots into quality classes according to the valid standard for fresh carrot marketing (UNECE FFV-10). In the ´Extra class´, there was an increase in the average yield after the application of Agriful about +5.4%; The average carrot yield in ´Class I´ was decreased about -1.0% and the root ratio in the ´Class II´ decreased about -1.9%. The ratio of ´Non-standard´ carrot roots was lower about -2.5%. Based on evaluating qualitative substance content (total carotenoids, refractometric dry matter), the positive influence of the effect of Agriful application was found. The content of total carotenoids was higher about +8.7% compared to the control variant. The refractometric dry matter was higher about +4.1% compared to the control variant. The obtained results can be used in further research on biostimulants and it is possible to create clear recommendations for using Agriful for small growers. It should be useful to verify these results in another vegetation period for recommendation to large-scale producers of carrots.


Download data is not yet available.


Adamec, S., Andrejiová A., Hegedűsová, A., Hegedűs, O., Musilová, J. 2019. Application effect of selected plant biostimulant on the quantitative and qualitative parameters of sweet pepper (Capsicum annum L.) in the organic farming system. International Multidisciplinary Scientific GeoConference: SGEM, vol. 19. Sofia : STEP92 Technology, p. 551-558. ISBN 978-619-7408-88-1.

Ahmad, T., Cawood, M., Iqbal, O., Ariño, A., Batool, A., Tariq, R. M. S., Azam, M., Akhtar, S. 2019. Phytochemicals in daucus carota and their health benefits—review article. Foods, vol. 8, no. 9, p. 424. DOI:

Akcin, A., Akcin, T. A., Yildirim, C. 2020. Application of Fulvic Acid Modulates Photosynthetic Pigments and Malondialdehyde Content in Bread Wheat (Triticum aestivum cv. Ekiz) to Increase Resistance to Chromium Stress. International Journal of Agriculture and Biology, vol. 23, no. 1, p. 142-148. https://doi:10.17957/IJAB/15.1270

Akladious, S. A., Mohamed, H. I. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, vol. 236, p. 244-250. DOI:

Alhariri, A., Boras, M. 2020. Responses of seed germination and yield related traits to seed pretreatment and foliar spray of humic and amino acids compounds in carrot (Daucus carota L.). IJCS, vol. 8, no. 4, p. 26-30. DOI:

Aminifard, M., Aroiee, H., Azizi, M., Nemati, H., Jaafar, H. Z. E. 2012. Effect of Humic Acid on Antioxidant Activities and Fruit Quality of Hot Pepper (Capsicum annuum L.). Journal of Herbs, Spices & Medicinal Plants, vol. 18, no. 4, p. 360-369. DOI:

Arnaoudov, B., Boteva, H., Dintcheva, T. 2019. Study of elements of integrated fertilizer systems in glasshouse cucumber. Trakia Journal of Sciences, vol. 17, no. 4, p. 375. https://doi:10.15547/tjs.2019.04.014 DOI:

Arscott, S. A., Tanumihardjo, S. A. 2010. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comprehensive reviews in food science and food safety, vol. 9, no. 2, p. 223-239. DOI:

Braziene, Z., Paltanavicius, V., Avizienytė, D. 2021. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environmental Research, vol. 195, p. 110824. DOI:

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., Piccolo, A. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia horticulturae, vol 196, p. 15-27. DOI:

Caruso, G., De Pascale, S., Cozzolino, E., Cuciniello, A., Cenvinzo, V., Bonini, P., Colla, G., Rouphael, Y. 2019. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy, vol. 9, no. 9, p. 505. DOI:

Cejpek, K. 2012. Analysis of food and natural products: Determination of carbohydrates in foodstuffs. Prague : Institute of Chemical Technology. Available at:

Durec, J., Kozelová, D., Matejková, E., Fikselová, M., Jakabová, S. 2019. Fruit as a source of antioxidants and trends in its consumption. Potravinarstvo, vol. 13, no.1, p. 251-257. DOI:

El-Helaly, M. A. 2018. Effect of foliar application of humic and fulvic acids on yield and its components of some carrot (Daucus carota l.) cultivars. Journal of Horticultural Science & Ornamental Plants, vol. 10, no. 3, p. 159-166. https://doi.10.5829/idosi.jhsop.2018.159.166

FAO. 2021. Crops. Available at:

Gholami, H., Ghani, A., Raouf Fard, F., Saharkhiza, M. J., Hazrati, H. 2018. Changes in photosynthetic pigments and uptake of some soil elements by chicory supplied with organic fertilizers. Acta Ecologica Sinica, vol. 39, no. 3, p. 250-269. https://doi.10.1016/j.chnaes.2018.09.003 DOI:

Hegedűsová, A., Šlosár, M., Mezeyová, I., Hegedűs, O., Andrejiová, A., Szarka, K. 2018. Methods for estimation of selected biologically active substances. Nitra: Slovak University of Agriculture. 95 p. ISBN 978-80-552-1928-8. Available at:

Jan, J. A., Nabi, G., Khan, M., Ahmad, S., Shah, P. S., Hussain, S., Sehrish. 2020. Foliar Application of Humic Acid Improves Growth and Yield of Chilli (Capsicum annum L.) Varieties. Pakistan Journal of Agricultural Research, vol. 33, no.3, p. 461. DOI:

Jindo, K., Olivares, F. L., Da Paixão Malcher, D. J., Sánchez-Monedero, M. A., Kempenaar, C. Canellas, L. P. 2020. From Lab to Field: Role of Humic Substances Under Open-Field and Greenhouse Conditions

as Biostimulant and Biocontrol Agent. Frontiers in Plant Science, vol. 11, p. 426. DOI:

Kandil, A. A., Sharief, A. E., Fathalla, F. H. 2013. Onion yield as affected by foliar application with amino and humic acids under nitrogen fertilizer levels. Crop Production, vol. 2, no. 2, p. 62-72.

Karakurt, Y., Unlu, H., Unlu, H., Padem, H. 2009. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, vol. 59, no. 3, p. 233-237. DOI:

Maraei, R., Eliwa, N., Aly, A. 2019. Use of some biostimulants to improve the growth and chemical constituents of sweet pepper. Potravinárstvo: Slovak Journal of Food Sciences, vol. 13, no. 1, p- 553-561. DOI:

Meravá, E. 2021. Situation and outlook report - Fruit and vegetables (Situačná a výhľadová správa - Ovocie a zelenina). Bratislava: VÚEPP. ISSN 13 38-8002. Available at:

Mikhov, M. 2012. Influence of bioproducts on energy productivity of field tomatoes. Agricultural Engineering (Bulgaria), vol. 49, no. 1. p. 5-13.

Mohajerani, S., Fazel, M. A., Madani, H., Lak, S., Modhej, A. 2016. Effect of the foliar application of humic acid on red bean cultivars (Phaseolus vulgaris L.). Journal of Experimental Biology and Agricultural Sciences, vol. 4, no. 5, p. 519-524. DOI:

Moradi, P., Pasari, B., Fayyaz, F. 2017. The effects of fulvic acid application on seed and oil yield of safflower cultivars. Journal of Central European Agriculture, vol. 18, no. 3. DOI:

Nardi, S., Pizzeghello, D., Schiavon, M., Ertani, A. 2016. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, vol. 73, p. 18-23. DOI:

Oleszkiewicz, T., Klimek-Chodacka, M., Milewska-Hendel, A., Zubko, M., Stróż, D., Kurczyńska, E., Boba, A., Szopa, J., Baranski, R. 2018. Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus. Planta, vol. 248, p. 1455–147. DOI:

Organix. 2014. Agriful. Available at:

Organix. 2017. Agriful. Available at:

Que, F., Hou, X. L., Wang, G. L., Xu, Z. S., Tan, G. F., Li, T., Wang, Y. H., Khadr, A., Xiong, A. S. 2019. Advances in research on the carrot, an important root vegetable in the Apiaceae family. Hortic Res, vol 6, no. 69. DOI:

Sabolová, M., Kouřimská, L. 2020. Vitamin C and nitrates contents in fruit and vegetable from farmer´s markets. Slovak Journal of Food Sciences, vol. 14. DOI:

Sharma, K. D., Karki, S., Thakur, N. S., Attri, S. 2012. Chemical composition, functional properties and processing of carrot—a review. J Food Sci Technol, vol. 49, p. 22-32. DOI:

Shehata, S., Gharib, S. A., El-Mogy, M. M., Gawad, A., Shalaby, E. A. 2011. Influence of compost, amino and humic acids on the growth, yield and chemical parameters of strawberries. Journal of Medicinal Plants Research, vol. 5, no. 11, p. 2304-2308.

Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Andreotti, C. 2018. Use of biostimulants for organic apple production: effects on tree growth, yield, and fruit quality at harvest and during storage. Frontiers in plant science, vol. 9, p. 1342. DOI:

Staneva, I., Akova, V., Kornov, G. 2020. The influence of some bioproducts on the yield and chemical composition of the peaches under the conditions of integrated plant production. Scientifics papers. Series B, Horticulture, vol. 64, no. 2,, p. 113-119.

Suh, H. Y., Yoo, K. S., Suh, S. G. 2014. Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. Horticulture. Environment, and Biotechnology, vol. 55, no. 3, p. 183-189. DOI:

Tang, G. 2010. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. The American Journal of Clinical Nutrition, vol. 91, no. 5, p. 1468S-1473S. DOI:

Tejada, M., Gonzalez, J. L. 2003. Influence of foliar fertilization with amino acids and humic acids on productivity and quality of asparagus. Biological agriculture & horticulture, vol. 21, no. 3, p. 277-291. DOI:

UNECE. 2017. UNECE standard FFV-10 concerning the marketing and commercial quality control of carrots. Available at:

Vujinović, T., Zanin, L., Venuti, S., Contin, M., Ceccon, P., Tomasi, N., Pinton, R., Cesco, S., De Nobili, M. 2020. Biostimulant action of dissolved humic substances from a conventionally and an organically managed soil on nitrate acquisition in maize plants. Frontiers in plant science, vol. 10, p. 1652. DOI:

Wilczewski, E., Szczepanek, M., Wenda-Piesik, A. 2018. Response of sugar beet to humic substances and foliar fertilization with potassium. Journal of Central European Agriculture, vol. 19, no. 1 DOI:

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., Brown, P. H. 2017. Biostimulants in plant science: A global perspective. Frontiers in plant science, vol. 7, p. 2049. DOI:

Yildirim, E. 2007. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, vol. 57, no. 2, p. 182-186. DOI:

Zaheer, K. 2017. Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CyTA - Journal of Food, vol. 15, no. 3, p. 474-487. DOI:



How to Cite

Fabianová, J., Andrejiová, A., Šlosár, M., Hegedűsová, A., & Benzová, L. (2021). The effect of soil biostimulant Agriful on the selected quantitative and qualitative parameters of carrot (Daucus carota subsp. sativus (Hoffm.) Arcang.). Potravinarstvo Slovak Journal of Food Sciences, 15, 1120–1127.

Most read articles by the same author(s)

<< < 1 2 3