The influence of cavitation effects on the purification processes of beet sugar production juices
DOI:
https://doi.org/10.5219/1494Keywords:
diffuse juice, associates, cavitation effects, hydrodynamic cavitation, surface tensionAbstract
In the juices of sugar beet, the viscosity of the produced viscosity is determined. They contain sugars and non-sugary compounds. If they are in the form of associated or complex compounds, then when their state changes. Well under the action of external factors or at their removal from a solution it is obligatory. Its rheological properties will also change. Therefore, with the help of determining the viscosity, it is possible to conclude the complex processes that take place in juices under the action of the effects of vapor condensation cavitation, namely: the force between Leculiary bonds, the size of molecules, and the length of chemical bonds, etc. The paper presents studies of the influence of vapor-condensation cavitation effects on the change of such rheological properties of cell and diffusion juice as viscosity and surface tension. The viscosity of the steam-treated juice is affected by complex transformational changes that occur with the associated compounds under the effects of vapor-condensation cavitation, which leads to their destruction and this leads to a decrease in their molecular weight and changes in concentration. Studies have shown that with increasing steam consumption for juice processing in the range of 0 – 1.5% by weight of juice the upper tension increases. Such legitimacy is also an indirect confirmation of the processes of destruction of the association. important compounds of diffusion juice under the influence of the effects of steam condensation cavitation.
Downloads
Metrics
References
Almohammed, F., Mhemdi, H., Grimi, N., Vorobiev, E. 2015. Alkaline Pressing of Electroporated Sugar Beet Tissue: Process Behavior and Qualitative Characteristics of Raw Juice. Food and Bioprocess Technology, vol. 8, p. 1947-1957. https://doi.org/10.1007/s11947-015-1551-7
Alves, N. N., de Oliveira Sancho, S., da Silva, A. R. A., Desobry, S., da Costa, J. M. C., Rodrigues, S. 2017. Spouted bed as an efficient processing for probiotic orange juice drying. Food Research International, vol. 101, p. 54-60. https://doi.org/10.1016/j.foodres.2017.08.052
Avalos-Llano, K. R., Molina, R. S., Sgroppo, S. C. 2020. UV-C Treatment Applied Alone or Combined with Orange Juice to Improve the Bioactive Properties, Microbiological, and Sensory Quality of Fresh-Cut Strawberries. Food and Bioprocess Technology, vol. 13, p. 1528-1543. https://doi.org/10.1007/s11947-020-02491-0
Bhatia, S., Bhakri, G., Arora, M., Batta, S. K., Uppal, S. K. 2016. Kinetic and Thermodynamic Properties of Partially Purified Dextranase from Paecilomyces lilacinus and Its Application in Dextran Removal from Cane Juice. Sugar Tech, vol. 18, p. 204-213. https://doi.org/10.1007/s12355-015-0378-x
Buniowska, M., Carbonell-Capella, J. M., Frigola, A., Esteve, M. J. 2017. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food chemistry, vol. 221, p. 1834-1842. https://doi.org/10.1016/j.foodchem.2016.10.093
Cervantes-Elizarrarás, A., Piloni-Martini, J., Ramírez-Moreno, E., Alanís-García, E., Güemes-Vera, N., Gómez-Aldapa, C. A.,Zafra-Rojas, Q., del Socorro Cruz-Cansino, N. 2017. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry, vol. 34, p. 371-379. https://doi.org/10.1016/j.ultsonch.2016.06.009
Dalfré Filho, J. G., Assis, M. P., Genovez, A. I. B. 2015. Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus. Journal of Hydro-environment research, vol. 9, no. 2, p. 259-267. https://doi.org/10.1016/j.jher.2015.03.001
Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., Ghaffari, H. 2018. Influence of foam thickness on production of lime juice powder during foam-mat drying: Experimental and numerical investigation. Powder Technology, vol. 328, p. 470-484. https://doi.org/10.1016/j.powtec.2018.01.034
Dhar, B. R., Elbeshbishy, E., Hafez, H., Lee, H. S. 2015. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresource Technology, vol. 198, р. 223-230. https://doi.org/10.1016/j.biortech.2015.08.048
Guo, S., Luo, J., Wu, Y., Qi, B., Chen, X., Wan, Y. 2018. Decoloration of sugarcane molasses by tight ultra filtration: Filtration behavior and fouling control. Separation and Purification Technology, vol. 204, p. 66-74. https://doi.org/10.1016/j.seppur.2018.04.067
Jiang, J. Q. 2015. The role of coagulation in water treatment. Current Opinion in Chemical Engineering, vol. 8, p. 36-44. https://doi.org/10.1016/j.coche.2015.01.008
Johnson, B. D., Zhou, X., Wangersky, P. J. 1986. Surface coagulation in sea water. Netherlands Journal of Sea Research, vol. 20, no. 2-3, p. 201-210. https://doi.org/10.1016/0077-7579(86)90042-6
Katariya, P., Arya, S. S., Pandit, A. B. 2020. Novel, non-thermal hydrodynamic cavitation of orange juice: Effects on physical properties and stability of bioactive compounds. Innovative Food Science & Emerging Technologies, vol. 62, 12 p. https://doi.org/10.1016/j.ifset.2020.102364
Kim, J. U., Ghafoor, K., Ahn, J., Shin, S., Lee, S. H., Shahbaz, H. M., Shin, H. H., Kim, S., Park, J. 2016. Kinetic modeling and characterization of a diffusion-based time-temperature indicator (TTI) for monitoring microbial quality of non-pasteurized angelica juice. LWT - Food Science and Technology, vol. 67, p. 143-150. https://doi.org/10.1016/j.lwt.2015.11.034
Kozelová, D. Mura, L., Matejková, E., Lopašovský, Ľ., Vietoris, V., Mendelová, A., Bezáková, M., Chreneková, M. 2011. Organic products, consumer behavior on market and european organic product market situation. Potravinarstvo Slovak Journal of Food Sciences, vol. 5, no. 3, p. 20-26. https://doi.org/10.5219/96
Krasulya, O., Bogush, V., Trishina, V., Potoroko, I., Khmelev, S., Sivashanmugam, P., Anandan, S. 2016. Impact of acoustic cavitation on food emulsions. Ultrasonics Sonochemistry, vol. 30, p. 98-102. https://doi.org/10.1016/j.ultsonch.2015.11.013
Lebovka, N. I., Shynkaryk, M. V., El-Belghiti, K., Benjelloun, H., Vorobiev, E. 2007. Plasmolysis of sugarbeet: Pulsed electric fields and thermal treatment. Journal of Food Engineering, vol. 80, no. 2, p. 639-644. https://doi.org/10.1016/j.jfoodeng.2006.06.020
Lee, K. E., Morad, N., Teng, T. T., Poh, B. T. 2012. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chemical Engineering Journal, vol. 203, p. 370-386. https://doi.org/10.1016/j.cej.2012.06.109
Luo, J., Guo, S., Qiang, X., Hang, X., Chen, X., Wan, Y. 2019. Sustainable utilization of cane molasses by an integrated separation process: Interplay between adsorption and nanofiltration. Separation and Purification Technology, vol. 219, p. 16-24 https://doi.org/10.1016/j.seppur.2019.03.008
Matyashchuk, A., Nemirovich, P., Khomichak, L., Malyzhik, I., Zheplinska, M, Pushanko, M. 1988. Hydrodynamic cavitation as one of the methods of intensification of pre-defecation. Scientific works of University of Food Technology, vol. 4, p. 83-85.
Moser, P., Nicoletti Telis, V. R., de Andrade Neves, N., García-Romero, E., Gómez-Alonso, S., Hermosín-Gutiérrez, I. 2017. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry, vol. 214, p. 308-318. https://doi.org/10.1016/j.foodchem.2016.07.081
Mushtruk, M., Vasyliv, V., Slobodaniuk, N., Mukoid, R., Deviatko, O. 2020. Improvement of the Production Technology of Liquid Biofuel from Technical Fats and Oils. In Ivanov, V., Pavlenko, I., Liaposchenko, O., Machado, J., Edl, M. Advances in Design, Simulation and Manufacturing IІI. Proceedings of the 3rd International Conference on Design, Simulation, Manufacturind: The Innovation Exchange, DSMIE-2020, June 9-12, Kharkiv, Ukraine – Volume 2: Mechanical and Chemical Engineering. Switzerland : Springer International Publishing, p. 377-386. ISBN 978-3-030-50491-5. https://doi.org/10.1007/978-3-030-50491-5_36
Mysels, K. J. 1990. The maximum bubble pressure method of measuring surface tension, revisited. Colloids and Surfaces, vol. 43, no. 2, p. 241-262. https://doi.org/10.1016/0166-6622(90)80291-B
Nadeem, M., Ubaid, N., Qureshi, T. M., Munir, M., Mehmood, A. 2018. Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrasonics Sonochemistry, vol. 45, p. 1-6. https://doi.org/10.1016/j.ultsonch.2018.02.034
Noguiera Felix, A. K., Martins, J. J. L., Lima Almeida, J. G., Giro, M. E. A., Cavalcante, K. F., Maciel Melo, V. M., Loiola Pessoa, O. D., Ponte Rocha, M. V., Rocha Barros Gonçalves, L., Saraiva de Santiago Aguiar, R. 2019. Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids and Surfaces B: Biointerfaces, vol. 175, p. 256-263. https://doi.org/10.1016/j.colsurfb.2018.11.062
Ozerov, D., Sapronov, A. 1985. Coagulation and aggregation of colloidal dispersion substances in pre-defecation. Sugar industry, vol. 8, p. 24-27.
Palamarchuk, I., Mushtruk, M., Vasyliv, V., Zheplinska, M. 2019. Substantiation of regime parameters of vibrating conveyor infrared dryers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 751-758. https://doi.org/10.5219/1184
Rahimi, G., Rastegar, S. O., Rahmani Chianeh, F., Gu, T. 2020. Ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids. RSC Advances, vol. 10, no. 3, p. 1685-1696. https://doi.org/10.1039/C9RA09325G
Sasikumar, R., Chutia, H., Deka, S. 2019. Thermosonication assisted extraction of blood fruit (Haematocarpus validus) juice and process optimization through response surface methodology. The Journal of Microbiology, Biotechnology and Food Sciences, vol. 9, no. 2, p. 228-235. https://doi.org/10.15414/jmbfs.2019.9.2.228-235
Sheiko, T., Tkachenko, S., Mushtruk, M., Vasyliv, V., Deviatko, O., Mukoid, R., Bilko, M., Bondar, M. 2019. The Studying the processing of food dye from beet juice. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 688-694. https://doi.org/10.5219/1152
Shmyrin, A., Kanyugina, A., Kuznetsov, A. 2017. Relational Neighborhood Model for Diffusion Stage of Sugar Production. International Journal of Applied Engineering Research, vol. 12, no. 12, p. 3151-3156. Available at: https://www.ripublication.com/ijaer17/ijaerv12n12_21.pdf
Somaratne, G., Reis, M. M., Ferrua, M. J., Ye, A., Nau, F., Floury, J., Dupont, D., Singh, R. P., Singh, J. 2019. Mapping the Spatiotemporal Distribution of Acid and Moisture in Food Structures during Gastric Juice Diffusion Using Hyperspectral Imaging. Journal of Agricultural and Food Chemistry, vol. 67, no. 33, p. 9399-9410. https://doi.org/10.1021/acs.jafc.9b02430
Sukhenko, Y., Mushtruk, M., Vasyliv, V., Sukhenko, V., Dudchenko, V. 2019. Production of Pumpkin Pectin Paste. In Ivanov, V., Trojanowska, J., Machado, J., Liaposhchenko, O., Zajac, J., Pavlenko, I., Edl, M., Perakovic, D. Advances in Design, Simulation and Manufacturing II. Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2019, Juna 11-14, 2019, Lutsk, Ukraine. Switzerland : Springer International Publishing, p. 805-812. ISBN 978-3-030-22364-9. https://doi.org/10.1007/978-3-030-22365-6_80
Verma, A., Shirkot, P., Dhiman, K., Rana, N., Joshi, V. K. 2018. Bacterial Laccase Mediated Inhibition of Enzymatic Browning in Apple Juice and Its Sensory Evaluation. International Journal of Current Microbiology and Applied Sciences, vol. 7, no. 1, p. 3371-3381. https://doi.org/10.20546/ijcmas.2018.701.399
Zdziennicka, A., Szymczyk, K., Krawczyk, J., Jańczuk, B. 2017. Some remarks on the solid surface tension determination from contact angle measurements. Applied Surface Science, vol. 405, p. 88-101. https://doi.org/10.1016/j.apsusc.2017.01.068
Zheplinska, M., Mushtruk, M., Kos, T., Vasyliv, V., Kryzhova, Y., Mukoid, R., Bilko, M., Kuts, A., Kambulova, Y., Gunko, S. 2020. The influence of cavitation effects on the purification processes of beet sugar production juices. Potravinarstvo Slovak Journal of Food Sciences, vol. 14, p. 451-457. https://doi.org/10.5219/1284
Zheplinska, M., Mushtruk, M., Vasyliv, V., Deviatko, O. 2019. Investigation of the process of production of crafted beer with spicy and aromatic raw materials. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 806-814. https://doi.org/10.5219/1183
Zhu, Z. Z., Yuan, F. Q., Xu, Z. M., Wang, W. L., Di, X. H., Barba, F. J., Shen, W. Y., Koubaa, M. 2016. Stirring-assisted dead-end ultrafiltration for protein and polyphenol recovery from purple sweet potato juices: Filtration behavior investigation and HPLC-DAD-ESI-MS2 profiling. Separation and Purification Technology, vol. 169, p. 25-32. https://doi.org/10.1016/j.seppur.2016.05.023
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).