Differences between microbiota, phytochemical, antioxidant profile and dna fingerprinting of cabernet sauvignon grape from Slovakia and Macedonia

Authors

  • Simona Kunová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376415807
  • Eva Ivanišová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376414421
  • Jana Žiarovská Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Plant Genetics and Breeding, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376414244
  • Lucia Zamiešková Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Plant Genetics and Breeding, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376414244
  • Soňa Felšöciová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376425813 https://orcid.org/0000-0002-2944-7071
  • Anka Trajkovska Petkoska University St. Kliment Ohridski-Bitola, Faculty of Technology and Technical Sciences, Dimitar Vlahov bb, 1400 Veles, Macedonia, Tel.: + 38970227353 https://orcid.org/0000-0002-9258-7966
  • Daniela Nikolovska Nedelkoska University St. Kliment Ohridski-Bitola, Faculty of Technology and Technical Sciences, Dimitar Vlahov bb, 1400 Veles, Macedonia, Tel.: +38971223115 https://orcid.org/0000-0002-8983-0961
  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit Science, Viticulture and Enology, Tr. A. Hlinku 2, 949 76, Nitra Slovakia, Faculty of Biology and Agriculture, University of Rzeszow, Department of Bioenergy Technology and Food Analysis, Zelwerowicza St. 4, 35-601 Rzeszow, Poland, Tel.: +421376414494

DOI:

https://doi.org/10.5219/1353

Keywords:

grape berries, bacteria, yeasts, antioxidant profile, MALDI-TOF MS Biotyper, polymorphism

Abstract

This study aimed to evaluate the microbiota, phytochemical, antioxidant profile and DNA fingerprinting of Cabernet Sauvignon grapes from Slovakia and R. North Macedonia. There were used two samples of grape berries (one sample from Slovakia and one from Macedonia). Each sample was analyzed in triplicate. The bacteria were cultivated on Plate count agar (PCA), microscopic filamentous fungi were cultivated on Malt extract agar (MEA). MALDI-TOF MS Biotyper mass spectrometry was used for the identification of microorganisms (bacteria and yeasts) and microscopic filamentous fungi with manuals. DPPH method was used to determine of antioxidant activity of grape berries. Phytochemical and antioxidant profiles were evaluated in grape berries samples. Total genomic DNA was extracted from mature grapes by GeneJET Plant Genomic DNA Purification Kit. The number of bacteria was higher in the sample of Macedonian grape (4.13 log CFU.g-1) in comparison to the grape from Slovakia as well as the number of yeasts was also higher in the Macedonian sample (2.57 log CFU.g-1). Antioxidant activity of Slovak grape berries was 0.55 mg TEAC.g-1 and of Macedonian grape, berries was 0.51 mg TEAC.g-1. Total polyphenol content was higher in grape from Slovakia (0.81 mg GAE.g-1) than in grape from Macedonia (0.77 mg GAE.g-1), while total flavonoid content was 0.57 and 0.17 mg QE.g-1 in Slovak grape and Macedonian grape, respectively. Total phenolic acid content was higher in the sample from Macedonia (0.40 mg CAE.g-1) compared to the grape from Slovakia (0.24 mg CAE.g-1). Total anthocyanin content was also higher in Macedonian grape (0.46 mg.g-1) compared to the Slovak sample (0.05 mg.g-1). The total polymorphism for all of the used primers of 87.5% was obtained for the Macedonian sample of Cabernet Sauvignon and 89.4% for the Slovak sample.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Antonius-Klemola, K., Kalendar, R., Schulman, A. H. 2006. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics, vol. 112, p. 999-1008. https://doi.org/10.1007/s00122-005-0203-0 DOI: https://doi.org/10.1007/s00122-005-0203-0

Barata, A., Malfeito-Ferreira, M., Loureiro, V. 2012. The microbial ecology of wine grape berries. International Journal of Food Microbiology, vol. 153, no. 3, p. 243-259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.11.025

Butorac, L., Hančević, K., Lukšić, K., Škvorc, Z., Leko, M., Maul, E., Zdunić, G. 2018. Assessment of wild grapevine (Vitis vinifera ssp. sylvestris) chlorotypes and accompanying woody species in the Eastern Adriatic region. PloS One, vol. 13, no. 6, p. e0199495. https://doi.org/10.1371/journal.pone.0199495 DOI: https://doi.org/10.1371/journal.pone.0199495

Drori, E., Rahimi, O., Marrano, A., Henig, Y., Brauner, H., Salmon-Divon, M., Netzer, Y., Prazzoli, M. L., Stanevsky, M., Failla, O., Weiss, E., Grando, M. S. 2017. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices. Scientific Reports, vol. 7, 12 p. https://doi.org/10.1038/srep44463 DOI: https://doi.org/10.1038/srep44463

Durec, J., Kozelová, D., Matejková, E., Fikselová, M., Jakabová, S. 2019. Fruit as a source of antioxidants and trends in its consumption. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 251-257. https://doi.org/10.5219/1042 DOI: https://doi.org/10.5219/1042

El-Beshbishy, H. A., Mohamadin, A. M., Abdel-Naim, A. B. 2009. In vitro evaluation of the antioxidant activities of grape seed (Vitis vinifera) extract, blackseed (Nigella sativa) extract and curcumin „Arabic Abstracts“. Journal of Taibah University Medical Sciences, vol. 4, no. 1, p. 23-35. https://doi.org/10.1016/s1658-3612(09)70090-3 DOI: https://doi.org/10.1016/S1658-3612(09)70078-2

Fang-Yong, C., Ji-Hong, L. 2014. Germplasm genetic diversity of Myrica rubra in Zhejiang Province studied using inter-primer binding site and start codon-targeted polymorphism markers. Scientia Horticulturae, vol. 170, p. 169-175. https://doi.org/10.1016/j.scienta.2014.03.010 DOI: https://doi.org/10.1016/j.scienta.2014.03.010

Fleet, G. H., Prakitchaiwattana, C. J., Beh, A. L., Heard, G. M. 2002. The yeast ecology of wine grapes. In Ciani, M. Biodiversity and Biotechnology of Wine Yeast. Kerala, India : Research Singpost, p. 1-17.

Fleet, G. H. 2003. Yeast interactions and wine flavour. International Journal of Food Microbiology, vol. 86, no. 1-2, p. 11-22. https://doi.org/10.1016/S0168-1605(03)00245-9 DOI: https://doi.org/10.1016/S0168-1605(03)00245-9

Francesca, N., Settanni, L., Sannino, C., Aponte, M., Moschetti, G. 2011. Ecology and technological capability of lactic acid bacteria isolated during Grillo grape vinification in the Marsala production area. Annals of Microbiology, vol. 61, p. 79-84. https://doi.org/10.1007/s13213-010-0109-1 DOI: https://doi.org/10.1007/s13213-010-0109-1

Francesca, N., Canale, D. E., Settanni, L., Moschetti, G. 2012. Dissemination of wine-related yeasts by migratory birds. Environmental Microbiology Reports, vol. 4, no. 1, p. 105-112. https://doi.org/10.1111/j.1758-2229.2011.00310.x DOI: https://doi.org/10.1111/j.1758-2229.2011.00310.x

Fuleki, T., Francis, F. J. 1968. Quantitative methods for anthocyanins. 2. Determination of total anthocyanin and degradation index for cranberry juice. Journal of Food Science, vol. 33, no. 1, p. 78-83. https://doi.org/10.1111/j.1365-2621.1968.tb00888.x DOI: https://doi.org/10.1111/j.1365-2621.1968.tb00888.x

Gilbert, J. A., van der Lelie, D., Zarraonaindia, I. 2014. Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 1, p. 5-6. https://doi.org/10.1073/pnas.1320471110 DOI: https://doi.org/10.1073/pnas.1320471110

Girard, B., Mazza, G. 1998. Functional grape and citrus products. In Mazza, G. Functional Foods, Biochemical and Processing Aspects. Lancaster, USA : Technomic Publishing Co., p. 139-191. ISBN 9781566764872.

Guo, D. L., Guo, M. X., Hou, X. G., Zhang, G. H. 2014 Molecular diversity analysis of grape varieties based on iPBS markers. Biochememical Systematics and Ecology, vol. 52, p. 27-32. https://doi.org/10.1016/j.bse.2013.10.008 DOI: https://doi.org/10.1016/j.bse.2013.10.008

Ivanova, V., Stefova, M., Chinnici, F. 2010. Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods. Journal of Serbian Chemical Society, vol. 75, no. 1, p. 45-59. https://doi.org/10.2298/JSC1001045I DOI: https://doi.org/10.2298/JSC1001045I

Jiang, B., Sun, Z. Y. 2018. Phenolic compounds, total antioxidant capacity and volatile components of Cabernet Sauvignon red wines from five different wine-producing regions in China. Food Science and Technology, vol. 39, no. 3, p. 735-746. https://doi.org/10.1590/fst.07818 DOI: https://doi.org/10.1590/fst.07818

Jiang, B., Zhang, Z. W. 2012. Comparison on Phenolic Compounds and Antioxidant Properties of Cabernet Sauvignon and Merlot Wines from Four Wine Grape-Growing Regions in China. Molecules, vol. 17, no. 8, p. 8804-8821. https://doi.org/10.3390/molecules17088804 DOI: https://doi.org/10.3390/molecules17088804

Kačániová, M., Terentjeva, M., Felsöciová, S., Ivanišová, E., Kunová, S., Žiarovská, J., Kluz, M., Hanus, P., Puchalski, C., Kántor, A. 2018. Bacteria and yeasts isolated from different grape varieties. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 108-115. https://doi.org/10.5219/878 DOI: https://doi.org/10.5219/878

Kalendar, R., Amenov, A., Daniyarov, A. 2018. Use of retrotransposon derived genetic markers to analyse genomic variability in plants. Functional Plant Biology, vol. 46, no. 1, p. 15-29. https://doi.org/10.1071/fp18098 DOI: https://doi.org/10.1071/FP18098

Kalendar, R., Antonius, K., Smýkal, P., Schulman, A. H. 2010. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, vol. 121, p. 1419-1430. https://doi.org/10.1007/s00122-010-1398-2 DOI: https://doi.org/10.1007/s00122-010-1398-2

Kim, T. H., Jeon, E. J., Cheung, D. Y., Kim, C. W., Kim, S. S., Park, S. H., Han, S. W., Kim, M. J., Lee, Y. S., Cho, M. L., Chang, J. H., Min, J. K., Kim, J. 2013. Gastroprotective effects of grape seed proanthocyanidin extracts against nonsteroid anti-inflammatory drug-induced gastric injury in rats. Gut and Liver, vol. 7, no. 3, p. 282-289. https://doi.org/10.5009/gnl.2013.7.3.282 DOI: https://doi.org/10.5009/gnl.2013.7.3.282

König, H., Unden, G., Fröhlich, J. 2009. Biology of Microorganisms on Grapes, in Must and in Wine. Berlin, Germany : Springer-Verlag, 522 p. ISBN 978-3-540-85463-0. https://doi.org/10.1007/978-3-540-85463-0 DOI: https://doi.org/10.1007/978-3-540-85463-0

Lam, S. S. T H., Howell, K. S. 2015. Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiology Letters, vol. 362, no. 20, 7 p. https://doi.org/10.1093/femsle/fnv170 DOI: https://doi.org/10.1093/femsle/fnv170

Lee, J., Durst, R. W., Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC INTERNATIONAL, vol. 88, no. 5, p. 1269-1278. https://doi.org/10.1093/jaoac/88.5.1269 DOI: https://doi.org/10.1093/jaoac/88.5.1269

Lesschaeve, I., Noble, A. C. 2005. Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. The American Journal of Clinical Nutrition, vol. 81, no. 1, p. 330S-335S. https://doi.org/10.1093/ajcn/81.1.330S DOI: https://doi.org/10.1093/ajcn/81.1.330S

Liang, Z., Cheng, L., Zhong,G. Y., Liu, R. H. 2014. Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes. Plos One, vol. 9, no. 8, 10 p. https://doi.org/10.1371/journal.pone.0105146 DOI: https://doi.org/10.1371/journal.pone.0105146

Lonvaud-Funel, A. 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. In Konings, W. N., Kuipers, O. P. In ’t Veld J.H.J.H. Lactic Acid Bacteria: Genetics, Metabolism and Applications. Dordrecht, The Netherlands : Springer, p. 317-331. https://doi.org/10.1007/978-94-017-2027-4_16 DOI: https://doi.org/10.1007/978-94-017-2027-4_16

Ma, Z. F., Zhang, H. 2017. Phytochemical constituents, health benefits and industrial application of grape seeds. A mini-review. Antioxidants, vol. 6, no. 3, 11 p. https://doi.org/10.3390/antiox6030071 DOI: https://doi.org/10.3390/antiox6030071

Matthäus, B. 2008. Virgin grape seed oil: Is it really a nutritional highlight? European Journal of Lipid Science and Technology, vol. 110, no. 7, p. 645-650. https://doi.org/10.1002/ejlt.200700276 DOI: https://doi.org/10.1002/ejlt.200700276

Melnikova, N. V., Kudryavtseva, A. V., Speranskaya, A. S., Krinitsina, A. A., Dmitriev, A. A., Belenikin, M. S., Upelniek, V. P., Batrak, E. R., Kovaleva, I. S., Kudryavtsev, A. M. 2012. The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria × ananassa) Cultivars. Journal of Agricultural Science, vol. 4, no. 11, 8 p. https://doi.org/10.5539/jas.v4n11p111 DOI: https://doi.org/10.5539/jas.v4n11p111

Milovanov, A., Zvyagin, A., Daniyarov, A., Kalendar, R., Troshin, L. 2019. Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers. Genetica, vol. 147, p. 91-101. https://doi.org/10.1007/s10709-019-00055-5 DOI: https://doi.org/10.1007/s10709-019-00055-5

Mitić, M. N., Souquet, J. M., Obradović, M. V., Mitić, S. S. 2012. Phytochemical profiles and antioxidant activities of serbian table and wine grapes. Food Science and Biotechnology, vol. 21, no. 6, p. 1619-1626. https://doi.org/10.1007/s10068-012-0215-x DOI: https://doi.org/10.1007/s10068-012-0215-x

Rodríguez Montealegre, R., Romero Peces, R., Chacón Vozmediano, J. L., Martínez Gascueña, J.,García Romero, E. 2006. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. Journal of Food Composition and Analysis, vol. 19, no. 6-7, p. 687-693. https://doi.org/10.1016/j.jfca.2005.05.003 DOI: https://doi.org/10.1016/j.jfca.2005.05.003

Morrison-Whittle, P., Goddard, M. R. 2018. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environmental Microbiology, vol. 20, no. 1, p. 75-84. https://doi.org/10.1111/1462-2920.13960 DOI: https://doi.org/10.1111/1462-2920.13960

Nisiotou, A. A., Rantsiou, K., Iliopoulos, V., Cocolin, L., Nychas, G. J. E. 2011. Bacterial species associated with sound and Botrytis-infected grapes from a Greek vineyard. International Journal of Food Microbiology, vol. 145, no. 2-3, p. 432-436. https://doi.org/10.1016/j.ijfoodmicro.2011.01.017 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.01.017

Polish Pharmaceutical Society. 2005. Polish Pharmacopoeia VII. Polish Pharmaceutical Society, Warsaw.

Pretorius, I. S. 2000. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, vol. 16, no. 8, p. 675-729. https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B DOI: https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B

Rao, R. S., Bhadra, B., Kumar, N. N., Shivaji, S. 2007. Candida hyderabadensis sp. nov., a novel ascomycetous yeast isolated from wine grapes. FEMS Yeast Research, vol. 7, no. 3, p. 489-493. https://doi.org/10.1111/j.1567-1364.2006.00206.x DOI: https://doi.org/10.1111/j.1567-1364.2006.00206.x

Sánchéz-Moreno, C., Larrauri, J. A., Saura-Calixto, F. 1998. A procedure to measure the antioxidant efficiency of polyphenols. Journal of the Science of Food and Agriculture, vol. 76, no. 2, p. 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

Shahidi, F., Naczk, M. 1995. Food Phenolics: Sources, Chemistry, Effects, Applications. Lancaster. USA : Technomic Publishing Co., 331 p. ISBN 9781566762793.

Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, vol. 16, p. 144-158. Available at: https://www.ajevonline.org/content/16/3/144

Stefanini, I., Dapporto, L., Legras, J. L., Calabretta, A., Di Paola, M., De Filippo, C., Viola, R., Capretti, P., Polsinelli, M., Turillazzi, S., cavalieri, D. 2012. Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 33, p. 13398-13403. https://doi.org/10.1073/pnas.1208362109 DOI: https://doi.org/10.1073/pnas.1208362109

Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., Pretorius, I. S. 2005. Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, vol. 11, no. 2, p. 139-173. https://doi.org/10.1111/j.1755-0238.2005.tb00285.x DOI: https://doi.org/10.1111/j.1755-0238.2005.tb00285.x

Wang, X. Y. 2008. Study on antioxidant activity of wine and its detection method. Dissertation thesis, Yangling, Shaanxi, China : Northwest A& F University.

Willett, W. C. 2002. Balancing life-style and genomics research for disease prevention. Science, vol. 296, no. 5568, p. 695-698. https://doi.org/10.1126/science.1071055 DOI: https://doi.org/10.1126/science.1071055

Xia, E. Q., Deng, G. F., Guo, Y. J., Li, H. B. 2010. Biological activities of polyphenols from grapes. International Journal of Molecular Sciences, vol. 11, no. 2, p. 622-646. https://doi.org/10.3390/ijms11020622 DOI: https://doi.org/10.3390/ijms11020622

Yang, J., Martinson, T. E., Liu, R. H. 2009. Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry, vol. 116, no. 1, p. 332-339. https://doi.org/10.1016/j.foodchem.2009.02.021 DOI: https://doi.org/10.1016/j.foodchem.2009.02.021

Yilmaz, Y., Toledo, R. T. 2004. Health aspects of functional grape seed constituents. Trends in Food Science and Technology, vol 15, no. 9, p. 422-433. https://doi.org/10.1016/j.tifs.2004.04.006 DOI: https://doi.org/10.1016/j.tifs.2004.04.006

Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., Bokulich, N. A., Mills, D. A., Martin, G., Taghavi, S., van der Lelie, D., Gilbert, J. A. 2015. The soil microbiome influences grapevine-associated microbiota. mBio, vol. 6, no. 2, 10 p. https://doi.org/10.1128/mbio.02527-14 DOI: https://doi.org/10.1128/mBio.02527-14

Published

2020-10-28

How to Cite

Kunová, S., Ivanišová, E. ., Žiarovská, J. ., Zamiešková, L., Felšöciová, S. ., Trajkovska Petkoska, A. ., Nikolovska Nedelkoska, D. ., & Kačániová, M. (2020). Differences between microbiota, phytochemical, antioxidant profile and dna fingerprinting of cabernet sauvignon grape from Slovakia and Macedonia. Potravinarstvo Slovak Journal of Food Sciences, 14, 945–953. https://doi.org/10.5219/1353