Intelligent control system for minced meat production

Authors

  • Boris Kapovsky V. M. Gorbatov Federal Research Centre for Food Systems of RAS, ‘System of Machines, the Development of New Technology and Experimental Design’ Laboratory, Talalikhina str., 26, 109316, Moscow, Russia, Tel.: +74956766751
  • Alexander Zakharov V. M. Gorbatov Federal Research Centre for Food Systems of RAS, Editorial and Publishing Departments, Talalikhina str., 26, 109316, Moscow, Russia, Tel.: +7495676691 https://orcid.org/0000-0003-4630-7983
  • Marina Nikitina V. M. Gorbatov Federal Research Centre for Food Systems of RAS, Centre of Economic and Analytical Research and Information Technologies, Direction of Information Technologies, Talalikhina str., 26, 109316, Moscow, Russia, Tel.: +74956769214 https://orcid.org/0000-0002-8313-4105

DOI:

https://doi.org/10.5219/1342

Keywords:

automation of sausage production, innovative approach, minced meat production, machine control

Abstract

This article presents the theoretical aspects of developing a control system for the processing of frozen raw meat by cutters in automatic mode. The method for analytical calculation of the productivity rate of meat cutting by a cutter with a screw tooth provides an accuracy for which relative error does not exceed 6%. The authors show automatic process control in minced meat production using a control system computer (CSC), with the aim of building an automatic control system (ACS) for chopping raw materials frozen in the form of blocks. The task of ACS synthesis was solved: the system structure and its elements were chosen, the topology of their cause-and-effect relationships and an algorithm of control devices were developed, and their parameters were determined. The ACS’s control loop scheme for raw material cutting speed was realized, where an assembly of devices was chosen as the object of management (OM): the squirrel cage induction motor (SCIM) of the cutting mechanism drive; the frequency converter (FC) of the supply voltage, which changes the rotation speed of the SCIM (the rotation speed of the milling cutter); and the milling cutter of the chopper. The shaping filter method was used, to predict the size of the meat chips produced, to modulate the perturbation acting on the system from the load side. Based on the single-stage chopping of raw meat, an automatic line is created for producing meat products, with a minced meat quality management system based on artificial intelligence on the principle of ‘unmanned technology’.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Balejko, J. A., Nowak, Z., Balejko, E. 2012. Artificial neural network as the tool in prediction rheological features of raw minced meat. Acta Scientiarum Polonorum Technologia Alimentaria, vol. 11, no. 3, p. 273-281.

Book, D. E., Velleman, P. F., Veaux, R. D. 2007. Stats: Moddeling the Word. 2nd ed. Boston : Pearson Addison Wesley, 680 p. ISBN 0-13-187-621-X.

Gaidyshev, I. 2001. Анализ и обработка данных: специальный справочник (Analysis and data processing: special directory). St. Petersburg : Piter, 752 p. ISBN 5-318-00220-X. (In Russian)

Greenwood, P. E., Nikulin, M. S. 1996. A Guide to Chi-Squared Testing. New York : Wiley, 304 p. ISBN 978-0-471-55779-1.

Herrero, A. M., De La Hoz, L., Ordóñez, J. A., Herranz, B., De Ávila, M. D., Cambero, M. I. 2008. Tensile properties of cooked meat sausages and their correlation with texture profile analysis (TPA) parameters and physico-chemical characteristics. Meat Science, vol. 80, no. 3, p. 690-696. https://doi.org/10.1016/j.meatsci.2008.03.008 DOI: https://doi.org/10.1016/j.meatsci.2008.03.008

Ivashov, V. I., Kapovsky, B. R., Plyasheshnik, P. I., Pchelkina, V. A., Iskakova, E. L., Nurmukhanbetova, D. E. 2018. Mathematical simulation of one-stage grinding of products frozen in blocks. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, vol. 5, no. 431, p. 48-65. https://doi.org/10.32014/2018.2518-170X.9 DOI: https://doi.org/10.32014/2018.2518-170X.9

Kapovsky, B. R., Pchelkina, V. A., Plyasheshnik, P. I., Dydykin, A. S., Lazarev, A. A. 2017. Use of artificial intelligence in the production of high quality minced meat. IOP Conference Series: Earth and Environmental Science, vol. 85, no. 1, p. 12-39. https://doi.org/10.1088/1755-1315/85/1/012039 DOI: https://doi.org/10.1088/1755-1315/85/1/012039

Kapovsky, B. R., Zakharov, A. N., Nikitina, M. A. 2019. The modelling of the crushing of meat raw materials for making management decisions in the production of emulsified meat products. IOP Conference Series: Materials Science and Engineering, vol. 630, no. 1, p. 12-30. https://doi.org/10.1088/1757-899X/630/1/012003 DOI: https://doi.org/10.1088/1757-899X/630/1/012003

Kobzar, A. I. 2006. Прикладная математическая статистика. Для инженеров и научных работников (Applied mathematical statistics. For engineers and scientists). Moscow : Fizmatlit, 816 p. ISBN 5-9221-0707-0. (In Russian)

Kosoj, V. D., Malyshev, A. D., Yudina, S. B. 2005. Инженерная реология в производстве колбас (Engineering rheology in the production of sausages). Moscow : Coloss, 264 p. ISBN 5-9532-0285-7. (In Russian)

Lagutin, M. B. 2007 Наглядная математическая статистика (Demonstrative mathematical statistics). Moscow : BINOM, Laboratoriya znanij, 472 p. ISBN 978-5-94774-996-0. (In Russian)

Lisitsyn, A. B., Ivashov, V. I., Kapovsky, B. R., Kozhevnikova, O. E. 2016. Статистический анализ энергозатрат процесса резания блочного замороженного мяса многолезвийным инструментом (Statistical analysis of energy consumption during the cutting of frozen meat blocks using multiple edge tool). Theory and Practice of Meat Processing, vol. 1, no. 1, p. 46-53. (In Russian) https://doi.org/10.21323/2114-441X-2016-1-46-53 DOI: https://doi.org/10.21323/2114-441X-2016-1-46-53

Lisitsyn, A. B., Lipatov, N. N., Kudryashov, L. S., Aleksakhina, V. A., Chernukha, I. M. 2004. Теория и практика переработки мяса (Theory and Practice of Meat Processing). Moscow : VNIIMP, 378 p. ISBN 5-901768-14-0 (In Russian)

Lisitsyn, A. B., Semenova, A. A., Kapovsky, B. R., Kuznetsova, T. G., Zakharov, A. N. 2017. An innovative method of fine comminution of meat raw material. An alternative to a longstanding tradition. Fleischwirtschaft, vol. 2, p. 60-65.

Protasov, K. V. 2005. Статистический анализ экспериментальных данных (Statistical analysis of experimental data). Moscow : Mir, 142 p. ISBN 5-03-003656-3. (In Russian)

Pupkov, K. A., Egupov, N. D., Barkin, A. I., Zajcev, A. V., Kanushkin, S. V., Komarcova, L. G., Korlyakova, M. O., Kornyushin, Y. P., Krasnoshchechenko, V. I., Kurdyukov, A. P., Maksimov, A. V., Melnikov, D. V., Myshlyaev, Y. I., Pilishkin, V. N., Rybin, V. M., Utrobin, G. F., Faldin, N. V., Filimonov, N. B. 2004a. Методы классической и современной теории автоматического управления. Том 5. Методы современной теории автоматического управления (Methods of classical and modern theory of automatic control. Volume 5. Methods of modern theory of automatic control). Moscow : Izdatelstvo MGTU im. N. E. Bauman, 784 p. ISBN 5-7038-2193-2. (In Russian)

Pupkov, K. A., Egupov, N. D., Vladimirov, I. G., Kornyushin, Y. P., Krasnoshchechenko, V. I., Kurdyukov, A. P., Pilishkin, V. N., Rybin, V. M., Sivcov, V. I., Slekenichs, Y. V., Timin, V. N., Trofimov, A. I., Faldin, N. V. 2004b. Методы классической и современной теории автоматического управления. Том 3. Синтез регуляторов автоматического управления (Methods of classical and modern theory of automatic control. Volume 3. Synthesis of automatic control regulators). Moscow : Izdatelstvo MGTU im. N. E. Bauman, 616 p. ISBN 5-7038-2191-6. (In Russian)

Pupkov, K. A., Egupov, N. D., Voronov, E. M., Konkov, V. G., Kornyushin, Y. P., Krasnoshchechenko, V. I., Makarenkov, A. M., Melnikov, D. V., Rybin, V. M., Sivcov, V. I., Trofimov, A. I., Faldin, N. V., Shevyakov, O. V. 2004c. Методы классической и современной теории автоматического управления. Том 2. Статистическая динамика и идентификация систем автоматического управления (Methods of classical and modern theory of automatic control. Volume 2. Statistical dynamics and identification of automatic control systems). Moscow : Izdatelstvo MGTU im. N. E. Bauman, 640 p. ISBN 5-7038-2190-8. (In Russian)

Shaykhutdinov, D., Shurygin, D., Aleksanyan, G., Grushko, I., Leukhin, R., Stetsenko, I., Oganyan, R., Bondarenko, V., Leukhin, V. 2016. Analysis and synthesis of algorithms of solving inverse problems by methods of classical and modern automatic control theory. Asian Journal of Information Technology, vol. 15, no. 9, p 1443-1446. https://doi.org/10.3923/ajit.2016.1443.1446

Thalhammer, F. 1998 Gekonnt produzieren. 2. Auflage. Landesverlag Druckservice Linz, 223 p. (In Germany)

Yao, X., Yao, X., Liu, C., Ge, D. 2010 Control evolution and case study for uncertain machining processes. Journal of Basic Science and Engineering, vol. 18, no. 1, p 177-186. https://doi.org/10.3969/j.issn.1005-0930.2010.01.020

Zajác, P., Čurlej, J., Barnová, M., Čapla, J. 2015. Analysis of texturometric properties of selected traditional and commercial sausages. Potravinarstvo, vol. 9, no. 1, p. 458-467. https://doi.org/10.5219/473 DOI: https://doi.org/10.5219/473

Zhou, N., Wang, L. 2012. The Analysis of Fuzzy Control Algorithm. Industrial Control and Electronics Engineering, vol. 2012, p. 182-184. https://doi.org/10.1109/icicee.2012.55 DOI: https://doi.org/10.1109/ICICEE.2012.55

Published

2020-09-28

How to Cite

Kapovsky, B., Zakharov, A., & Nikitina, M. (2020). Intelligent control system for minced meat production. Potravinarstvo Slovak Journal of Food Sciences, 14, 750–758. https://doi.org/10.5219/1342

Similar Articles

You may also start an advanced similarity search for this article.