Effect of fuzzy-controlled slow freezing on pumpkin (Cucurbita Moschata Duch) cell disintegration and phenolics

Authors

  • Yohanes Kristianto Polytechnic of Health, Ministry of Health, Department of Nutrition, Besar Ijen 77c, 65112, Malang, Indonesia, Tel.: +62341551896 https://orcid.org/0000-0003-1488-9333
  • Wignyanto University of Brawijaya, Faculty of Agricultural Technology, Department of Agroindustrial Technology, Veteran, 65145, Malang, Indonesia, Tel.: +62341580106
  • Bambang Dwi Argo University of Brawijaya, Faculty of Agricultural Technology, Department of Agricultural Engineering, Veteran, 65145, Malang, Indonesia, Tel.: +62341580106
  • Imam Santoso University of Brawijaya, Faculty of Agricultural Technology, Department of Agroindustrial Technology, Veteran, 65145, Malang, Indonesia, Tel.: +62341580106

DOI:

https://doi.org/10.5219/1303

Keywords:

pumpkin, freezing, fuzzy, disintegration, phenolic

Abstract

Freezing has been widely used to preserve vegetables including seasonal pumpkins. This work aimed to investigate the effects of freezing on pumpkin cell disintegration and phenolics. A fuzzy logic control (FLC) system was built to obtain better temperature control of the freezing system. Changes in cellular disintegration, electrical conductivity and phenolics content were evaluated. The angle measure technique and principal component analysis were used to delineate the surface texture changes of the frozen pumpkin cells. The results showed that FLC offered reliable temperature control performance. Freezing at -18 °C for 7 h caused the highest cell degradation of 0.467 on the disintegration scale. Decomposition was also indicated by an almost double increase in electrical conductivity. The changes in texture were accurately reflected in the mean angle spectra and 81.3% and 7.4% of the variability due to treatments could be explained by two principal components respectively. Freezing pumpkin at -18 °C for 6 h correlated to the maximum increase in total phenolics of 70.44%. The increased phenolics were dominated by caffeic acid, chlorogenic acid and p-coumaric acid. In conclusion, as the freezing system exhibits positive effects on the phenolics content of pumpkin, it may be employed to process seasonal pumpkin to obtain higher value from the produce.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I. 2018. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, vol. 11, p. 12-17. https://doi.org/10.1016/j.jarmap.2018.07.003 DOI: https://doi.org/10.1016/j.jarmap.2018.07.003

Bainy, E. M., Corazza, M. L., Lenzi, M. K. 2015. Measurement of freezing point of tilapia fish burger using differential scanning calorimetry (DSC) and cooling curve method. Journal of Food Engineering, vol. 161, p. 82-86. https://doi.org/10.1016/j.jfoodeng.2015.04.001 DOI: https://doi.org/10.1016/j.jfoodeng.2015.04.001

Brown, M. H. 1991. Microbiological aspects of frozen foods. In Bald, W. B. (Ed.) Food freezing: today and tomorrow. London: Springer, p. 15-25. https://doi.org/10.1007/978-1-4471-3446-6_2 DOI: https://doi.org/10.1007/978-1-4471-3446-6_2

Bulut, M., Bayer, Ö., Kırtıl, E., Bayındırlı, A. 2018. Effect of freezing rate and storage on the texture and quality parameters of strawberry and green bean frozen in home type freezer. International Journal of Refrigeration, vol. 88, p. 360-369. https://doi.org/10.1016/j.ijrefrig.2018.02.030 DOI: https://doi.org/10.1016/j.ijrefrig.2018.02.030

Bystrická, J., Musilová, J., Tomáš, J., Kavalcová, P., Lenková, M., Tóthová, K. 2015. Varietal dependence of chemoprotective substances in fresh and frozen spinach (Spinacia oleracea, L.). Potravinarstvo, vol. 9, no. 1, p. 468-473. https://doi.org/10.5219/519 DOI: https://doi.org/10.5219/519

Cheung, J. Y. M., Kamal, A. S. 1997. Fuzzy logic controller for industrial refrigeration systems. IFAC Proceedings Volumes, vol. 30, no. 6, p. 745-750. https://doi.org/10.1016/S1474-6670(17)43454-9 DOI: https://doi.org/10.1016/S1474-6670(17)43454-9

Deng, J., Yang, H., Capanoglu, E., Cao, H., Xiao, J. 2018. Technological aspects and stability of polyphenols. In Galanakis, C. M. (Ed.) Polyphenols: properties, recovery, and applications. Oxford: Woodhead Publishing, p. 295-323. https://doi.org/10.1016/B978-0-12-813572-3.00009-9 DOI: https://doi.org/10.1016/B978-0-12-813572-3.00009-9

Fellows, P. 2009. Food processing technology: principles and practice. 3rd ed. Great Abington, Cambridge: Woodhead Publishing Limited, 913 p. ISBN-13 978-1-84569-216-2.

Fongaro, L., Kvaal, K. 2013. Surface texture characterization of an Italian pasta by means of univariate and multivariate feature extraction from their texture images. Food Research International, vol. 51, no. 2, p. 693-705. https://doi.org/10.1016/j.foodres.2013.01.044 DOI: https://doi.org/10.1016/j.foodres.2013.01.044

Hernández-Carrión, M., Hernando, I., Sotelo-Díaz, I., Quintanilla-Carvajal, M. X., Quiles, A. 2015. Use of image analysis to evaluate the effect of high hydrostatic pressure and pasteurization as preservation treatments on the microstructure of red sweet pepper. Innovative Food Science & Emerging Technologies. vol. 27, p. 69-78. https://doi.org/10.1016/j.ifset.2014.10.011 DOI: https://doi.org/10.1016/j.ifset.2014.10.011

Huang, J., Esbensen, K. H. 2000. Applications of angle measure technique (AMT) in image analysis: Part I. A new methodology for in situ powder characterization. Chemometrics and Intelligent Laboratory Systems, vol. 54, no. 1, p. 1-19. https://doi.org/10.1016/S0169-7439(00)00100-3 DOI: https://doi.org/10.1016/S0169-7439(00)00100-3

Jantzen, J. 2013. Foundations of fuzzy control: a practical approach. 2nd ed. Chichester, UK: John Wiley and Sons, 325 p. ISBN-13 978-1-118-53558-5.

Khan, M., Mahesh, C., Vineeta, P., Sharma, G., Semwal, A. 2019. Effect of pumpkin flour on the rheological characteristics of wheat flour and on biscuit quality. Journal of Food Processing & Technology, vol. 10, no. 10, p. 814. https://doi.org/10.35248/2157-7110.19.10.814 DOI: https://doi.org/10.35248/2157-7110.19.10.814

Kumar, S., Rattan, P., Samnotra, R. 2016. Squashes and gourds. In Pessarakli, M. (Ed.) Handbook of cucurbits: growth, cultural practices, and physiology. Boca Raton, FL: CRC Press, p. 513-531. ISBN-13 978-1-4822-3459-6. DOI: https://doi.org/10.1201/b19233-41

Kvaal, K., Kucheryavski, S. V., Halstensen, M., Kvaal, S., Flø, A. S., Minkkinen, P., Esbensen, K. H. 2008. eAMTexplorer: a software package for texture and signal characterization using angle measure technique. Journal of Chemometrics, vol. 22, no. 11-12, p. 717-721. https://doi.org/10.1002/cem.1160 DOI: https://doi.org/10.1002/cem.1160

Leong, S. Y., Oey, I. 2012. Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, vol. 133, no. 4, p. 1577-1587. https://doi.org/10.1016/j.foodchem.2012.02.052 DOI: https://doi.org/10.1016/j.foodchem.2012.02.052

Li, D., Zhu, Z., Sun, D.-W. 2018. Effects of freezing on cell structure of fresh cellular food materials: a review. Trends in Food Science & Technology, vol. 75, p. 46-55. https://doi.org/10.1016/j.tifs.2018.02.019 DOI: https://doi.org/10.1016/j.tifs.2018.02.019

Marra, F. 2013. Impact of freezing rate on electrical conductivity of produce. SpringerPlus, vol. 2, no. 1, p. 633. https://doi.org/10.1186/2193-1801-2-633 DOI: https://doi.org/10.1186/2193-1801-2-633

Maskooki, A., Eshtiaghi, M. N. 2012. Impact of pulsed electric field on cell disintegration and mass transfer in sugar beet. Food and Bioproducts Processing, vol. 90, no. 3, p. 377-384. https://doi.org/10.1016/j.fbp.2011.12.007 DOI: https://doi.org/10.1016/j.fbp.2011.12.007

Maynard, D. N., Hochmuth, G. J. 2007. Knott’s handbook for vegetable growers. 5th ed. Hoboken, NJ: John Wiley and Sons, 621 p. ISBN-13 978-0-471-73828-2.

Mendelova, A., Mendel, Ľ., Fikselová, M., Mareček, J., Vollmannová, A. 2017. Winter squash (Cucurbita moschata Duch) fruit as a source of biologically active components after its thermal treatment. Potravinarstvo, vol. 11, no. 1, p. 489-495. https://doi.org/10.5219/788 DOI: https://doi.org/10.5219/788

Moreira, L. de A. S., de Carvalho, L. M. J., Cardoso, F. da S. e S. N., Ortiz, G. M. D., Finco, F. D. B. A., de Carvalho, J. L. V. 2019. Different cooking styles enhance antioxidant properties and carotenoids of biofortified pumpkin (Cucurbita moschata Duch) genotypes. Food Science and Technology. https://doi.org/10.1590/fst.39818 DOI: https://doi.org/10.1590/fst.39818

Oloyede, F. M., Agbaje, G. O., Obuotor, E. M., Obisesan, I. O. 2012. Nutritional and antioxidant profiles of pumpkin (Cucurbita pepo Linn.) immature and mature fruits as influenced by NPK fertilizer. Food Chemistry, vol. 135, no. 2, p. 460-463. https://doi.org/10.1016/j.foodchem.2012.04.124 DOI: https://doi.org/10.1016/j.foodchem.2012.04.124

Pathan, A. K., Bond, J., Gaskin, R. E. 2010. Sample preparation for SEM of plant surfaces. Materials Today, vol. 12, p. 32-43. https://doi.org/10.1016/S1369-7021(10)70143-7 DOI: https://doi.org/10.1016/S1369-7021(10)70143-7

Pham, Q. T. 2014. Food freezing and thawing calculations. New York: Springer, 151 p. ISBN-13 978-1-4939-0556-0.

Provesi, J. G., Amante, E. R. 2015. Carotenoids in pumpkin and impact of processing treatments and storage. In Preedy, V. (Ed.) Processing and impact on active components in food. 1st ed. San Diego, CA: Academic Press, p. 71-80. ISBN-13 978-0-12-404699-3. DOI: https://doi.org/10.1016/B978-0-12-404699-3.00009-3

Quevedo, R., Carlos, L.-G., Aguilera, J. M., Cadoche, L. 2002. Description of food surfaces and microstructural changes using fractal image texture analysis. Journal of Food Engineering, vol. 53, no. 4, p. 361-371. https://doi.org/10.1016/S0260-8774(01)00177-7 DOI: https://doi.org/10.1016/S0260-8774(01)00177-7

R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/

Rahman, M. S., Machado-Velasco, K. M., Sosa-Morales, M. E., Velez-Ruiz, J. F. 2009. Freezing point: measurement, data, and prediction. In Rahman, M. S. (Ed.) Food properties handbook. 2nd ed. New York: CRC Press, p. 154-192.

Raju, P., Chauhan, O., Bawa, A. 2011. Postharvest handling systems and storage of vegetables. In Sinha, N., Hui Y. (Eds.) Handbook of vegetables and vegetable processing. Ames, Iowa: Blackwell Publishing Ltd, p. 185-198. ISBN-13 978-0-8138-1541-1.

Rojas, M. L., Augusto, P. E. D. 2018. Microstructure elements affect the mass transfer in foods: the case of convective drying and rehydration of pumpkin. LWT, vol. 93, p. 102-108. https://doi.org/10.1016/j.lwt.2018.03.031 DOI: https://doi.org/10.1016/j.lwt.2018.03.031

Saleh, B., Aly, A. A. 2015. Flow control methods in refrigeration systems: a review. International Journal of Control, Automation and Systems, vol. 4, no. 1, p. 14-25.

Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., Jacobo-Velázquez, D. A. 2013. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, vol. 5, no. 21, p. 5990. https://doi.org/10.1039/c3ay41125g DOI: https://doi.org/10.1039/c3ay41125g

Santos, M. N. G. dos, Silva, E. P. da, Godoy, H. T., Silva, F. A. da, Celestino, S. M. C., Pineli, L. de L. de O., Damiani, C. 2018. Effect of freezing and atomization on bioactive compounds in cagaita (Eugenya dysenterica DC) fruit. Food Science and Technology, vol. 38, no. 4, p. 600-605. https://doi.org/10.1590/fst.03117 DOI: https://doi.org/10.1590/fst.03117

Schneider, C. A., Rasband, W. S., Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, vol. 9, no. 7, p. 671-675. https://doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089

Tomaz, I., Šeparović, M., Štambuk, P., Preiner, D., Maletić, E., Karoglan Kontić, J. 2017. Effect of freezing and different thawing methods on the content of polyphenolic compounds of red grape skins. Journal of Food Processing and Preservation, vol. 42, no. 3, p. e13550. https://doi.org/10.1111/jfpp.13550 DOI: https://doi.org/10.1111/jfpp.13550

Vorobiev, E., Lebovka, N. 2009. Pulsed-electric-fields-induced effects in plant tissues: fundamental aspects and perspectives of applications. In Electrotechnologies for extraction from food plants and biomaterials. New York: Springer, p. 39-81. ISBN 0-387-79373-9. https://doi.org/10.1007/978-0-387-79374-0_2 DOI: https://doi.org/10.1007/978-0-387-79374-0_2

Zaritzky, N. 2011. Physical–chemical principles in freezing. In Sun, D.-W. (Ed.) Handbook of frozen food processing and packaging. 2nd ed. Boca Raton, FL: CRC Press, p. 4-37. ISBN-13 978-1-4398-3605-7.

Zdunic, G., Menkovic, N., Jadranin, M., Novakovic, M., Savikin, K., Zivkovic, J. 2016. Phenolic compounds and carotenoids in pumpkin fruit and related traditional products. Hemijska Industrija, vol. 70, no. 4, p. 429-433. https://doi.org/10.2298/HEMIND150219049Z DOI: https://doi.org/10.2298/HEMIND150219049Z

Published

2020-05-28

How to Cite

Kristianto, Y., Wignyanto, Argo, B. D., & Santoso, I. (2020). Effect of fuzzy-controlled slow freezing on pumpkin (Cucurbita Moschata Duch) cell disintegration and phenolics. Potravinarstvo Slovak Journal of Food Sciences, 14, 277–285. https://doi.org/10.5219/1303