Increasing of selenium content and qualitative parameters in tomato (Lycopersicon esculentum Mill.) after its foliar application

Authors

  • Alena Andrejiová Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Department of Vegetable Production, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4247 https://orcid.org/0000-0001-5484-440X
  • Alžbeta Hegedűsová Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Department of Vegetable Production, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4712
  • Samuel Adamec Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Department of Vegetable Production, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4239 https://orcid.org/0000-0001-6423-7005
  • Ondrej Hegedűs J. Selye University Faculty of Economics, Department of Management, Bratislavská cesta 3322. 945 01, Komárno https://orcid.org/0000-0002-0643-7014
  • Ivana Mezeyová Slovak University of Agriculture in Nitra, Horticulture and Landscape Engineering Faculty, Department of Vegetable Production, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4243 https://orcid.org/0000-0001-5405-5611

DOI:

https://doi.org/10.5219/1097

Keywords:

tomato, selenium, biologically active substances, biofortification

Abstract

The effect of genotype and selenium foliar biofortification in the form of an aqueous solution of sodium selenate on the content of total carotenoids, vitamin C, total polyphenols and selenium content in the tomato fruits was studied.  Field experiment was held in the Botanical garden of the Slovak University of Agriculture in 2016. Seven determinant varieties of tomato in the two variants were observed. The results of experiments show that treatment of plants with the dose of Se concentration (150 g Se.ha-1) at the flowering stage significantly increased the total Se content in the in tomato fruits. Foliar application of selenium had a positive effect on the increase of total polyphenol. The influence of Se biofortification on the content of vitamin C and carotenoids was not detected. Selenium foliar fertilization in dosage 150 g.ha-1 is suitable way of tomato fruits enriching in polyphenols, without negative effect on other antioxidants content.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abushita, A. A., Dado, H. G., Biacs, P. A. 2000. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry, vol. 48, no. 6, p. 2075-2081. https://doi.org/10.1021/jf990715p DOI: https://doi.org/10.1021/jf990715p

Andrejiová, A., Hegedűsová, A., Mezeyová, I., Marták, M., Šlosár, M. 2015. Qualitative and quantitative characteristics of Serbian tomato varieties grown in conditions of Slovak republic. Potravinarstvo, vol. 9, no. 1, p. 119-123. https://doi.org/10.5219/449 DOI: https://doi.org/10.5219/449

Anton, D., Matt, D., Pedastsaar, P., Bender, I., Kazimierczak, R., Roasto, M., Kaart, T., Luik, A., Püssa, T. 2014. Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) cultivars grown under organic and conventional conditions. Journal of Agricultural and Food Chemistry, vol. 62, no. 22, p. 5173-5180, https://doi.org/10.1021/jf500792k DOI: https://doi.org/10.1021/jf500792k

Aspila, P. 2005. History of selenium supplemented fertilization in Finland. In Merja Eurola. Proceedings, Twenty Years of Selenium Fertilization. Helsinki, Finland : MTT Agrifood Research Finland, p. 8-13. ISBN 951-729-966-4.

Carli, P., Caruso, G., Fogliano, V., Carputo, D., Frusciante, L., Ercolano, M. R. 2011. Development of a methodology to forecast the nutritional value of new tomato hybrids. Euphytica, vol. 180, no. 3, p. 291-300. https://doi.org/10.1007/s10681-011-0350-0 DOI: https://doi.org/10.1007/s10681-011-0350-0

Ducsay, L., Ložek, O., Varga, L. 2009. The influence of selenium soil application on its content in spring wheat. Plant Soil Environ., vol. 55, p. 80-84. https://doi.org/10.17221/318-PSE DOI: https://doi.org/10.17221/318-PSE

FAOSTAT. 2014. Agricultural data. Available at: http://www.fao.org/faostat/en/#home

Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Di Matteo, A., Fogliano, V., Pellegrini, N. 2007. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res., vol. 51, no 5, p. 609-617. https://doi.org/10.1002/mnfr.200600158 DOI: https://doi.org/10.1002/mnfr.200600158

George, B., Kaur, Ch., Khurdiya, D. S., Kapoor, H. C. 2004. Antioxidants in tomato (Lycopersicum esculentum) as a function of genotype. Food Chemistry, vol. 84, p. 45-54. https://doi.org/10.1016/S0308-8146(03)00165-1 DOI: https://doi.org/10.1016/S0308-8146(03)00165-1

George, B., Kaur, Ch., Khurdiya, D. S., Kapoor, H. C. 2004. Antioxidants in tomato (Lycopersicon esculentum) as a function of genotype´. Food Chemistry, vol. 84, no. 1, p. 45-5. https://doi.org/10.1016/S0308-8146(03)00165-1 DOI: https://doi.org/10.1016/S0308-8146(03)00165-1

Gómez-Romero, M. 2010. Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit´. Phytochemistry, vol. 71, p. 1848-1864. https://doi.org/10.1016/j.phytochem.2010.08.002 DOI: https://doi.org/10.1016/j.phytochem.2010.08.002

Guil-Guerrero, J. L., Rebolloso-Fuentes, M. M. 2009. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. Journal of Food Composition and Analysis, vol. 22, p. 123-129. https://doi.org/10.1016/j.jfca.2008.10.012 DOI: https://doi.org/10.1016/j.jfca.2008.10.012

Gümüsay, O. A., Borazan, A. A., Ercal, N., Demirkol, O. 2015. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, vol. 173, p. 156-162. https://doi.org/10.1016/j.foodchem.2014.09.162 DOI: https://doi.org/10.1016/j.foodchem.2014.09.162

Hart, D. J., Scott, K. J. 1995. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoids content of vegetables and fruits commonly consumed in the UK. Food Chemistry, vol. 54, no. 1, p. 101-111. https://doi.org/10.1016/0308-8146(95)92669-B DOI: https://doi.org/10.1016/0308-8146(95)92669-B

Haug, A. Graham, R. D., Christophersen, O. A., Lyons, G. H. 2007. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microbial Ecology in Health and Disease, vol. 19, p 209-228. https://doi.org/10.1080/08910600701698986 DOI: https://doi.org/10.1080/08910600701698986

Hegedűs, O., Hegedűsová, A., Gašparík, J., Ivičičová, A. 2005. Evaluation of the ETA-AAS and HG-AAS methods of selenium determination in vegetables. Chemické Listy, vol. 99, p. 518-524.

Hegedűs, O., Hegedűsová, A., Šimková, S., Pavlík, V., Jomová, K. 2008. Evaluation of the ET-AAS and HG-AAS methods of selenium determination in vegetables. Journal of Biochemical and Biophysical Methods, vol. 70, no. 6, p. 1287-1291. https://doi.org/10.1016/j.jprot.2008.01.002 DOI: https://doi.org/10.1016/j.jprot.2008.01.002

Hegedűsová, A., Mezeyová, I., Hegedűs, O., Andrejiová, A., Juríková, T., Golian, M., Lošák, T. 2017. Increasing of selenium content and qualitative parameters in garden pea (Pisum sativum L.) after its foliar application. Acta Scientiarum Polonorum Hortorum Cultus, vol. 16, no. 6, p. 3-17. https://doi.org/10.24326/asphc.2017.6.1 DOI: https://doi.org/10.24326/asphc.2017.6.1

Ježek, P., Škarpa, P., Lošák, T., Hlušek, J., Jůzl, M., Elzner, P. 2012. Selenium – An Important Antioxidant in Crops Biofortification. In El-Missiry, M. A. Antioxidant Enzyme. London, UK : InTechOpen Limited, p. 410. ISBN 978-953-51-0789-7. https://doi.org/10.5772/50356 DOI: https://doi.org/10.5772/50356

Kavalcová, P., Bystrická, J., Trebichalský, P., Volnová, B., Kopernická, M. 2014. The influence of selenium on content of total polyphenols and antioxidant activity of onion (Allium cepa L.). The Journal of Microbiology, Biotechnology and Food Sciences, vol. 3, p. 238-240. DOI: https://doi.org/10.5219/524

Kotíková, Z., Lachman, J., Hejtmánková, A., Hejtmánková, K. 2011. Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT - Food Science and Technology, vol. 44, no. 8, p. 1703-1710. https://doi.org/10.1016/j.lwt.2011.03.015 DOI: https://doi.org/10.1016/j.lwt.2011.03.015

Lachman, J., Miholová, D., Pivec, V., Jírů, K., Janovská, D. 2011. Content of phenolic antioxidants and selenium in grainof einkorn (Triticum monococcum), emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties. Plant soil environ., vol. 57, no. 5, p. 235-243. https://doi.org/10.17221/13/2011-PSE DOI: https://doi.org/10.17221/13/2011-PSE

Liu, D., Shi, J., Ibarra, A. C., Kakudac Y., Xue, S. J. 2008. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and b-carotene mixtures on the DPPH free radical. LWT - Food Science and Technology, vol. 41, no. 7, p. 1344-1349. https://doi.org/10.1016/j.lwt.2007.08.001 DOI: https://doi.org/10.1016/j.lwt.2007.08.001

Luthria, D., Mukhopadhyay, D., Krizek, D. 2006. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. Journal of food composition and analysis, vol. 19, p. 771-777. https://doi.org/10.1016/j.jfca.2006.04.005 DOI: https://doi.org/10.1016/j.jfca.2006.04.005

Mendelová, A., Andrejiová, A., Líšková, M., Kozelová, B., Mareček, J. 2012. Analysis of carotenoids and lycopene in tomato (Lycopersicon esculentum Mill.) and their retention in tomato juice. Potravinarstvo, vol. 6, no. 2, p. 36-38. https://doi.org/10.5219/195 DOI: https://doi.org/10.5219/195

Mendelová, A., Fikselová, M., Mendel, Ľ. 2013. Carotenoids and lycopene content in fresh and dried tomato fruits and tomato juice. Acta universitatis agriculturae et silviculturae mendelianae brunensis, vol. 61, no. 5, p. 1329-1337. https://doi.org/10.11118/actaun201361051329 DOI: https://doi.org/10.11118/actaun201361051329

Mendelova, A., Fikselová, M., Mendel, Ľ., Andrejiová, A. Mareček, J., Czako, P. 2015. Quality assessment of edible tomato varieties intended for industrial processing. Journal of Microbiology, Biotechnology and Food Sciences, vol. 4, no. 3, p. 114-117, https://doi.org/10.15414/jmbfs.2015.4.special3.114-117 DOI: https://doi.org/10.15414/jmbfs.2015.4.special3.114-117

Meravá, E. 2017. Vegetable. Short report 31.12.2016 and prognosion on 2017 (Zelenina. Situačná a výhľadová správa k 31.12.2016 a výhľad na rok 2017). Bratislava, Slovak Republic : VÚEPP, 54 p. (In Slovak)

Nawaz, F. 2012. Selenium (Se) Regulates Seedling Growth in Wheat under Drought Stress. Advances in Chemistry, vol. 2014, 7 p. https://doi.org/10.1155/2014/143567 DOI: https://doi.org/10.1155/2014/143567

Pandey, K. B., Rizvi, S. I. 2009. Plant polyphenols as dietary antioxidants in human health and disea. Oxidative medicine and cellular longevity, vol. 2, no. 5, p. 270-278 https://doi.org/10.4161/oxim.2.5.9498 DOI: https://doi.org/10.4161/oxim.2.5.9498

Perveen, R., Suleria, H. A. R., Anjum, F. M., Butt, M. S., Pasha, I., Ahmad, S. 2015. Tomato (Solanum lycopersicum) carotenoids & lycopenes chemistry; Metabolism. Absorption. Nutrition and Allied health claims - A comprehensive review. Crit. Rev. Food Sci. Nutr., vol. 55, no. 7, p. 919-929. https://doi.org/10.1080/10408398.2012.657809 DOI: https://doi.org/10.1080/10408398.2012.657809

Pinela, J., Barros, L., Carvalho, A. M., Ferreira, I. 2012. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern. Food and Chemical Toxicology, vol. 50, no. 3-4, p. 829-834. https://doi.org/10.1016/j.fct.2011.11.045 DOI: https://doi.org/10.1016/j.fct.2011.11.045

Rothery, E. 1988. Analytical methods for graphite tube atomizers. Mulgrave, Australia : Varian Australia, 193 p. ISBN 1019251468.

Stan, M., Soran, M. L., Marutoiu, C. 2014. Extraction and HPLC Determination of the Ascorbic Acid Content of Three Indigenous Spice Plants. Journal of Analytical Chemistry, vol. 69, no. 10, p. 998-1002. https://doi.org/10.1134/S106193481410013X DOI: https://doi.org/10.1134/S106193481410013X

Thompson, A. K. 2015. Fruit and Vegetables Harvesting, Handling and Storage. 3rd. Oxford, England : Wiley Blackwell, p. 981. ISBN 978-1-118-65404-0.

Tinggi, U. 2008. Selenium: Its role as antioxidant in human health. Environmental Health and Preventive Medicine, vol. 13, no. 2, p. 102-108. https://doi.org/10.1007/s12199-007-0019-4 DOI: https://doi.org/10.1007/s12199-007-0019-4

Vallverdú-Queralt, A., Odriozola-Serrano, I., Oms-Oliu, G., Lamuela-Raventós, R. M., Elez-Martínez, P., Martín-Belloso, O. 2012. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. Journal of Agricultural and Food Chemistry, vol. 60, no. 38, p. 9667-9672. https://doi.org/10.1021/jf302791k DOI: https://doi.org/10.1021/jf302791k

Vladimir-Knežević, S., Blažeković, B., Štefan, M. B., Babac, M. 2012. Plant Polyphenols as Antioxidants Influencing the Human Health. In Venketeshwer, R. Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health. London, UK : InTechOpen Limited, p. 155-180. ISBN 978-953-51-0203-8. https://doi.org/10.5772/27843 DOI: https://doi.org/10.5772/27843

Wójcik, P. 2004. Uptake of mineral nutrients from foliar fertilization (review). Journal of Fruit and Ornamental Plant Research, vol. 12, p. 201-218.

Published

2019-05-28

How to Cite

Andrejiová, A. ., Hegedűsová, A. ., Adamec, S. ., Hegedűs, O. ., & Mezeyová, I. . (2019). Increasing of selenium content and qualitative parameters in tomato (Lycopersicon esculentum Mill.) after its foliar application. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 351–358. https://doi.org/10.5219/1097