Antioxidant profile of mulled wine

Authors

  • Dani Dordevic University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackého tř. 1946/1, 612 42 Brno, Tel.: +420792409507 https://orcid.org/0000-0002-2435-9726
  • Simona Jancikova University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackého tř. 1946/1, 612 42 Brno, Czech Republic https://orcid.org/0000-0001-8858-3279
  • Bohuslava Tremlova University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackého tř. 1946/1, 612 42 Brno, Czech Republic https://orcid.org/0000-0002-2910-1177

DOI:

https://doi.org/10.5219/1070

Keywords:

Cabernet Moravia, mulled wine, spices, cloves, cinnamon, antioxidants

Abstract

The aim of the study was to compare chemical and nutritional profile of wine and heat-treated wine, called mulled wine. The experiment was focused on simulation of ordinary produce mulled wine by the majority of consumers. Cabernet Moravia (bottled in Velkobí­lovická ví­na s.r.o., Czech Republic) was used for the experimental production of mulled wine. Following spices were added to wine during cooking: cloves (Vitana, Czech Republic) and cinnamon (KOTíNY, Austria). The samples of wine were heat treated in stainless steel pot for 5 minutes. The relative density, acidity, alcohol content, phenol content and antioxidant capacity were monitored in experimentally produced wine and mulled wine. The gained results showed that samples of mulled wine with added cloves had statistically significant (p <0.05) higher phenol content and higher antioxidant properties in comparison with wine before heat treatment and spices addition. The results clearly showed that mulled wine can be considered as the product with better health beneficial nutritional profile than wine from which it is produced; in addition, mulled wine sample had significantly (p <0.05) lower alcoholic content (8.27 ±0.04 vol.%).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Artero, A., Artero, A., Tarin, J. J., Cano, A. 2015. The impact of moderate wine consumption on health. Maturitas, vol. 80, p. 3-13. https://doi.org/10.1016/j.maturitas.2014.09.007 DOI: https://doi.org/10.1016/j.maturitas.2014.09.007

Bajčan, D., Vollmannová, A., Šimanský, V., Bystrická, J., Trebichalský, P., Árvay, J., Czako, P. 2016. Antioxidant activity, phenolic content and colour of the Slovak cabernet sauvignon wines. Potravinarstvo, vol. 10, p. 89-94. https://doi.org/10.5219/534 DOI: https://doi.org/10.5219/534

Balík, J., Kumšta, M. 2008. Evaluation of colour content in grapes originating from South Moravia. Czech Journal of Food Sciences, vol. 26, p 18-24. https://doi.org/10.17221/240/2008-CJFS DOI: https://doi.org/10.17221/240/2008-CJFS

Ben–Arfa, B. A. E., Salvado, I. M. M., Ferreira, J. M. F., Pullar, R. C. 2019. Clove and cinnamon: Novel anti–oxidant fuels for preparing magnetic iron oxide particles by the sol–gel auto–ignition method. Journal of Alloys and Compounds, vol. 786, p. 71-76. https://doi.org/10.1016/j.jallcom.2019.01.306 DOI: https://doi.org/10.1016/j.jallcom.2019.01.306

Boban, N., Tonkic, M., Modun, D., Budimir, D., Mudnic, I., Sutlovic, D., Punda-Polic, V., Boban, M. 2010. Thermally treated wine retains antibacterial effects to food-born pathogens. Food control, vol. 21, p. 1161-1165. https://doi.org/10.1016/j.foodcont.2010.01.012 DOI: https://doi.org/10.1016/j.foodcont.2010.01.012

Cepeda, E., Villarán, M. C. 1999. Density and viscosity of Malus floribunda juice as a function of concentration and temperature. Journal of Food Engineering, vol. 41, no. 2, p. 103-107. https://doi.org/10.1016/S0260-8774(99)00077-1 DOI: https://doi.org/10.1016/S0260-8774(99)00077-1

Chiva-Blanch, G., Urpi-Sarda, M., Ros, E., Valderas-Martinez, P., Casas, R., Arranz, S., Guillén, M., Lamuela-Raventos, R. M., Llorach, R., Andres-Lacueva, C., Estruch, R. 2013. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clinical Nutrition, vol. 32, no. 2, p. 200-206. https://doi.org/10.1016/j.clnu.2012.08.022 DOI: https://doi.org/10.1016/j.clnu.2012.08.022

Contreras, A., Hidalgo, C., Henschke, P. A., Chambers, P. J., Curtin, C., Varela, C. 2014. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Applied and Environmental Microbiology, vol. 80, p. 1670-1678. https://doi.org/10.1128/AEM.03780-13 DOI: https://doi.org/10.1128/AEM.03780-13

Grant, M. 2010. Who is listening?,. In Proceedings of Fourteenth Australian Wine Industry Technical Conference. AWITC Inc, Glen Osmond, Adelaide, South Australia, Australia, p. 25-27. ISBN 978-0-9870480-9-7.

Gulcin, I., Sat, I. G., Beydemir, S., Elmastas, M. Kufrevioglu, O. I. 2004. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, vol. 87, no. 3, p. 393-400. https://doi.org/10.1016/j.foodchem.2003.12.008 DOI: https://doi.org/10.1016/j.foodchem.2003.12.008

Leino, M., Francis, I. L., Kallio, H., Williams, P. J. 1993. Gas Chromatographic headspace analysis of Chardonnay and Semillon wines after thermal processing Gaschromatographische Kopfraum-Analyse der erhitzten Chardonnay-und Semillon-Weine. Zeitschrift für Lebensmittel-Untersuchung und Forschung, vol. 197, no. 1, p. 29-33. https://doi.org/10.1007/BF01202696 DOI: https://doi.org/10.1007/BF01202696

MacAvoy, M. G. 2010. Wine-harmful or healthy? What is being considered in Australia and New Zealand? In Proceedings of Fourteenth Australian Wine Industry Technical Conference. AWITC Inc, Glen Osmond, Adelaide, South Australia, Australia. p. 28-31. ISBN 978-0-9870480-9-7.

Mudnić, I., Budimir, D., Jajić, I., Boban, N., Sutlović, D., Jerončić, A., Boban, M. 2011. Thermally Treated Wine Retains Vasodilatory Activity in Rat and Guinea Pig Aorta. Journal of Cardiovascular Pharmacology, vol. 57, no. 6, p. 707-711. https://doi.org/10.1097/FJC.0b013e3182192247 DOI: https://doi.org/10.1097/FJC.0b013e3182192247

Naegele, E. 2013. Determination of Chlorogenic Acid in Coffee Products According to DIN 10767. Food Testing and Agriculture-Food Authenticity, 1-8. Available at: https://www.gimitec.com/file/5991-2852EN.pdf

OIV. 2009. Compendium of international methods of wine and must analysis. International Organisation of Vine and Wine, Paris, p. 154-196.

Pinelo, M., Manzocco, L., Nuñez, M. J. Nicoli, M. C. 2004. Interaction among phenols in food fortification: negative synergism on antioxidant capacity. Journal of Agricultural and Food Chemistry, vol. 52, no. 5, p. 1177-1180. https://doi.org/10.1021/jf0350515 DOI: https://doi.org/10.1021/jf0350515

Santin, J. R., Lemos, M., Klein-Júnior, L. C., Machado, I. D., Costa, P., de Oliveira, A. P., Tilia, C., de Souza, J. P., de Sousa, J. P. B., Bastos, J. K., de Andrade, S. F. 2011. Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component eugenol in different animal models. Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 383, no. 2, p. 149-158. https://doi.org/10.1007/s00210-010-0582-x DOI: https://doi.org/10.1007/s00210-010-0582-x

Serafini, M., Maiani, G., Ferro-Luzzi, A. 1997. Effect of ethanol on red wine tannin–protein (BSA) interactions. Journal of Agricultural and Food Chemistry, vol. 45, no. 8, p. 3148-3151. https://doi.org/10.1021/jf960864x DOI: https://doi.org/10.1021/jf960864x

Snopek, L., Mlček, J., Fic, V., Hlaváčova, I., Škrovánková, S., Fisera, M., Velichová, H., Ondrášova, M. 2018. Interaction of polyphenols and wine antioxidants with its sulfur dioxide preservative. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 180-185. https://doi.org/10.5219/899 DOI: https://doi.org/10.5219/899

Sukorini, H., Sangchote, S., Khewkhom, N. 2013. Control of postharvest green mold of citrus fruit with yeasts, medicinal plants, and their combination. Postharvest biology and technology, vol. 79, p. 24-31. https://doi.org/10.1016/j.postharvbio.2013.01.001 DOI: https://doi.org/10.1016/j.postharvbio.2013.01.001

Talcott, S. T., Howard, L. R., Brenes, C. H. 2000. "Antioxidant changes and sensory properties of carrot puree processed with and without periderm tissue." Journal of agricultural and food chemistry, vol. 48, no. 4, p. 1315-1321. https://doi.org/10.1021/jf9910178 DOI: https://doi.org/10.1021/jf9910178

Tanchev, S., Ioncheva, N., Genov, N., Malchev, E. 1997. Kinetics of the thermal degradation of some phenolic acids. Food/Nahrung, vol. 23, no. 9-10, p. 863-866. https://doi.org/10.1002/food.19790230903 DOI: https://doi.org/10.1002/food.19790230903

Yamaguchi, T., Katsuda, M., Oda, Y., Terao, J., Kanazawa, K., Oshima, S., Inakuma, T., Ishiguro, Y., Takamura, H., Matoba, T. 2003. Influence of polyphenol and ascorbate oxidases during cooking process on the radicalscavenging activity of vegetables. Food Science and Technology Research, vol. 9, no. 1, p. 79-83. https://doi.org/10.3136/fstr.9.79 DOI: https://doi.org/10.3136/fstr.9.79

Zanchi, D., Poulain, C., Konarev, P., Tribet, C., Svergun, D. I. 2008. Colloidal stability of tannins: Astringency, wine tasting and beyond. Journal of Physics Condensed Matter, vol. 20, 494224 p. https://doi.org/10.1088/0953-8984/20/49/494224 DOI: https://doi.org/10.1088/0953-8984/20/49/494224

Zorraquín-Peña, I., Esteban-Fernández, A., González de Llano, D., Bartolomé, B., Moreno-Arribas, M. 2019. Wine-Derived Phenolic Metabolites in the Digestive and Brain Function. Beverages, vol. 5, no. 1, 7 p. https://doi.org/10.3390/beverages5010007 DOI: https://doi.org/10.3390/beverages5010007

Published

2019-06-28

How to Cite

Dordevic, D., Jancikova, S., & Tremlova, B. (2019). Antioxidant profile of mulled wine. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 415–421. https://doi.org/10.5219/1070

Most read articles by the same author(s)

<< < 1 2