Microbiological characteristics of hard cheese with flax seeds
DOI:
https://doi.org/10.5219/1956Keywords:
rennet cheese, cheese technology, flax seeds, cheese ripening, lactic acid microfloraAbstract
Highly nutritious dairy products such as hard cheeses are considered a good source of protein, fats, mineral substances, and vitamins and are consumed in significant quantities. At the same time, the disadvantages of cheeses include the presence of a large amount of saturated fatty acids in their composition, which are associated with the development of cardiovascular diseases. Therefore, modifying the composition of fatty acids in hard cheese by increasing the content of unsaturated fatty acids and reducing the amount of saturated fatty acids is extremely important for consumers' health. This research aimed to determine the dynamics of microbiological indicators in the ripening technology of hard rennet cheese with different contents of flax seeds as a source of omega-3 fatty acids. The technology of hard rennet cheese with 3-5% flax seed content was investigated. A 1.3 times higher content of lactic acid microflora was found in samples of hard cheese with 5% flax seeds during the first 10 days of ripening compared to the control sample of cheese. On the 60th day of ripening of cheese with a content of 5% flax seeds, the number of lactic acid bacteria was 9.4 ±0.3×109 CFU/g, and in the control cheese – 7.8 ±0.3×109 CFU/g. During the production and ripening of cheese with different content of flax seeds, no exceedance of normative values was found for the number of Enterobacteriaceae and Staphylococcus aureus bacteria. A method (washing the seeds in a sodium bicarbonate solution and drying at a temperature of 95 ±1 for 20 min) of processing flax seeds before adding them to the cheese mass was proposed, which reduced the number of mesophilic microorganisms by approximately 200 times to 3.9 ±0.1×101 CFU/ g, fungi by 160 times to 0.3 ±0.1×101 CFU/g and aerobic mesophilic bacilli by 78 times to 1.1 ±0.1×101 CFU/g. Therefore, the developed hard rennet cheese with flax seeds can be consumed as an additional source of omega-3 fatty acids and dietary fiber.
Downloads
Metrics
References
Kukhtyn, M., Vichko, O., Kravets, O., Karpyk, H., Shved, O., & Novikov, V. (2019). Biochemical and microbiological changes during fermentation and storage of a fermented milk product prepared with Tibetan Kefir Starter. In Archivos Latinoamericanos de Nutrición (Vol. 68, Issue 4, pp. 336–343). Sociedad Latinoamericana de Nutricion. https://doi.org/10.37527/2018.68.4.007 DOI: https://doi.org/10.37527/2018.68.4.007
Skril, Y. (2023). Analytical review of biotechnological problem of Ukrainian hard cheeses. In Biotechnologia Acta (Vol. 16, Issue 3, pp. 5–23). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications). https://doi.org/10.15407/biotech16.03.005 DOI: https://doi.org/10.15407/biotech16.03.005
Kukhtyn, M., Salata, V., Horiuk, Y., Kovalenko, V., Ulko, L., Prosyanуi, S., Shuplyk, V., & Kornienko, L. (2021). The influence of the denitrifying strain of Staphylococcus carnosus No. 5304 on the content of nitrates in the technology of yogurt production. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 66–73). HACCP Consulting. https://doi.org/10.5219/1492 DOI: https://doi.org/10.5219/1492
Yukalo, V. G., & Storozh, L. A. (2018). Isolation of κ-CN-1P and Β-CN-5Р fractions from native casein micelles. In The Ukrainian Biochemical Journal (Vol. 90, Issue 4, pp. 74–79). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka). https://doi.org/10.15407/ubj90.04.074 DOI: https://doi.org/10.15407/ubj90.04.074
Gumus, C. E., & Gharibzahedi, S. M. T. (2021). Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. In Trends in Food Science & Technology (Vol. 110, pp. 267–279). Elsevier BV. https://doi.org/10.1016/j.tifs.2021.02.016 DOI: https://doi.org/10.1016/j.tifs.2021.02.016
Nadirova, S., & Sinyavskiy, Yu. (2023). Biotechnological approaches to the creation of new fermented dairy products. In Eurasian Journal of Applied Biotechnology (Issue 4, pp. 128–136). National Center for Biotechnology. https://doi.org/10.11134/btp.4.2022.16 DOI: https://doi.org/10.11134/btp.4.2022.16
Arioui, F., Ait Saada, D., & Cheriguene, A. (2016). Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis. In Food Science & Nutrition (Vol. 5, Issue 2, pp. 358–364). Wiley. https://doi.org/10.1002/fsn3.400 DOI: https://doi.org/10.1002/fsn3.400
Dabija, A., Codină, G. G., Ropciuc, S., Gâtlan, A.-M., & Rusu, L. (2018). Assessment of the Antioxidant Activity and Quality Attributes of Yogurt Enhanced with Wild Herbs Extracts. In Journal of Food Quality (Vol. 2018, pp. 1–12). Hindawi Limited. https://doi.org/10.1155/2018/5329386 DOI: https://doi.org/10.1155/2018/5329386
Yousefi, M., & Jafari, S. M. (2019). Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties. In Trends in Food Science & Technology (Vol. 88, pp. 468–483). Elsevier BV. https://doi.org/10.1016/j.tifs.2019.04.015 DOI: https://doi.org/10.1016/j.tifs.2019.04.015
Meybodi, N. M., Mortazavian, A. M., Arab, M., & Nematollahi, A. (2020). Probiotic viability in yoghurt: A review of influential factors. In International Dairy Journal (Vol. 109, p. 104793). Elsevier BV. https://doi.org/10.1016/j.idairyj.2020.104793 DOI: https://doi.org/10.1016/j.idairyj.2020.104793
Farahat, E. S. A., Mohamed, A. G., El-Loly, M. M., & Gafour, W. A. M. S. (2021). Innovative vegetables-processed cheese: I. Physicochemical, rheological and sensory characteristics. In Food Bioscience (Vol. 42, p. 101128). Elsevier BV. https://doi.org/10.1016/j.fbio.2021.101128 DOI: https://doi.org/10.1016/j.fbio.2021.101128
Salehi, F. (2021). Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. In Food Science & Nutrition (Vol. 9, Issue 8, pp. 4666–4686). Wiley. https://doi.org/10.1002/fsn3.2430 DOI: https://doi.org/10.1002/fsn3.2430
Kamath, R., Basak, S., & Gokhale, J. (2022). Recent trends in the development of healthy and functional cheese analogues-a review. In LWT (Vol. 155, p. 112991). Elsevier BV. https://doi.org/10.1016/j.lwt.2021.112991 DOI: https://doi.org/10.1016/j.lwt.2021.112991
Sharma, K. D., Stähler, K., Smith, B., & Melton, L. (2011). Antioxidant capacity, polyphenolics and pigments of broccoli-cheese powder blends. In Journal of Food Science and Technology (Vol. 48, Issue 4, pp. 510–514). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-010-0211-1 DOI: https://doi.org/10.1007/s13197-010-0211-1
Lavelli, V., Sri Harsha, P. S. C., Torri, L., & Zeppa, G. (2014). Use of winemaking by-products as an ingredient for tomato puree: The effect of particle size on product quality. In Food Chemistry (Vol. 152, pp. 162–168). Elsevier BV. https://doi.org/10.1016/j.foodchem.2013.11.103 DOI: https://doi.org/10.1016/j.foodchem.2013.11.103
Marchiani, R., Bertolino, M., Ghirardello, D., McSweeney, P. L. H., & Zeppa, G. (2015). Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. In Journal of Food Science and Technology (Vol. 53, Issue 3, pp. 1585–1596). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-015-2105-8 DOI: https://doi.org/10.1007/s13197-015-2105-8
Marchiani, R., Bertolino, M., Belviso, S., Giordano, M., Ghirardello, D., Torri, L., Piochi, M., & Zeppa, G. (2015). Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, Microbiological and Sensory Properties. In Journal of Food Quality (Vol. 39, Issue 2, pp. 77–89). Wiley. https://doi.org/10.1111/jfq.12181 DOI: https://doi.org/10.1111/jfq.12181
Slozhenkina, M. I., Gorlov, I. F., Kryuchkova, V. V., Serkova, A. E., Ryaskova, A. D., & Belik, S. N. (2019). Vegetable ingredient in cheese product. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 13, Issue 1, pp. 1018–1025). HACCP Consulting. https://doi.org/10.5219/1207 DOI: https://doi.org/10.5219/1207
El-Sayed, S. M. (2020). Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. In Heliyon (Vol. 6, Issue 1, p. e03278). Elsevier BV. https://doi.org/10.1016/j.heliyon.2020.e03278 DOI: https://doi.org/10.1016/j.heliyon.2020.e03278
Alenisan, M. A., Alqattan, H. H., Tolbah, L. S., & Shori, A. B. (2017). Antioxidant properties of dairy products fortified with natural additives: A review. In Journal of the Association of Arab Universities for Basic and Applied Sciences (Vol. 24, Issue 1, pp. 101–106). Informa UK Limited. https://doi.org/10.1016/j.jaubas.2017.05.001 DOI: https://doi.org/10.1016/j.jaubas.2017.05.001
Grażyna, C., Hanna, C., Adam, A., & Magdalena, B. M. (2017). Natural antioxidants in milk and dairy products. In International Journal of Dairy Technology (Vol. 70, Issue 2, pp. 165–178). Wiley. https://doi.org/10.1111/1471-0307.12359 DOI: https://doi.org/10.1111/1471-0307.12359
Adetuyi, B. O., Olajide, P. A., Adetunji, C. O., & Adetunji, J. B. (2024). Beneficial uses of essential oils in diary products. Applications of Essential Oils in the Food Industry. https://doi.org/10.1016/B978-0-323-98340-2.00021-3 DOI: https://doi.org/10.1016/B978-0-323-98340-2.00021-3
Baba, W. N., Jan, K., Punoo, H. A., Wani, T. A., Dar, M. M., & Masoodi, F. A. (2018). Techno-functional properties of yoghurts fortified with walnut and flaxseed oil emulsions in guar gum. In LWT (Vol. 92, pp. 242–249). Elsevier BV. https://doi.org/10.1016/j.lwt.2018.02.007 DOI: https://doi.org/10.1016/j.lwt.2018.02.007
Rao, S., Radhakrishnan, P., Valiathan, S., & M, S. (2023). Rosehip oil nanoemulsion as a stable delivery system for omega-3 fatty acids to enhance the nutritional value of yogurt. In Food Chemistry Advances (Vol. 3, p. 100545). Elsevier BV. https://doi.org/10.1016/j.focha.2023.100545 DOI: https://doi.org/10.1016/j.focha.2023.100545
Ganesan, B., Brothersen, C., & McMahon, D. J. (2013). Fortification of Foods with Omega-3 Polyunsaturated Fatty Acids. In Critical Reviews in Food Science and Nutrition (Vol. 54, Issue 1, pp. 98–114). Informa UK Limited. https://doi.org/10.1080/10408398.2011.578221 DOI: https://doi.org/10.1080/10408398.2011.578221
Sąsiadek, W., Michalski, J., & Ulatowski, P. (2018). Charakterystyka nienasyconych kwasów tłuszczowych zawartych w rybach. In Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu (Issue 542, pp. 161–176). Wroclaw University of Economics and Business. https://doi.org/10.15611/pn.2018.542.12 DOI: https://doi.org/10.15611/pn.2018.542.12
Briggs, M., Petersen, K., & Kris-Etherton, P. (2017). Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. In Healthcare (Vol. 5, Issue 2, p. 29). MDPI AG. https://doi.org/10.3390/healthcare5020029 DOI: https://doi.org/10.3390/healthcare5020029
Feizollahi, E., Hadian, Z., & Honarvar, Z. (2018). Food Fortification with Omega-3 Fatty Acids; Microencapsulation as an Addition Method. In Current Nutrition & Food Science (Vol. 14, Issue 2, pp. 90–103). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573401313666170728151350 DOI: https://doi.org/10.2174/1573401313666170728151350
Lock, A. L., & Bauman, D. E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. In Lipids (Vol. 39, Issue 12, pp. 1197–1206). Wiley. https://doi.org/10.1007/s11745-004-1348-6 DOI: https://doi.org/10.1007/s11745-004-1348-6
Russo, G. L. (2009). Dietary n−6 and n−3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. In Biochemical Pharmacology (Vol. 77, Issue 6, pp. 937–946). Elsevier BV. https://doi.org/10.1016/j.bcp.2008.10.020 DOI: https://doi.org/10.1016/j.bcp.2008.10.020
Iafelice, G., Caboni, M. F., Cubadda, R., Di Criscio, T., Trivisonno, M. C., & Marconi, E. (2008). Development of Functional Spaghetti Enriched with Long Chain Omega‐3 Fatty Acids. In Cereal Chemistry (Vol. 85, Issue 2, pp. 146–151). Wiley. https://doi.org/10.1094/cchem-85-2-0146 DOI: https://doi.org/10.1094/CCHEM-85-2-0146
Singh, K. K., Mridula, D., Rehal, J., & Barnwal, P. (2011). Flaxseed: A Potential Source of Food, Feed and Fiber. In Critical Reviews in Food Science and Nutrition (Vol. 51, Issue 3, pp. 210–222). Informa UK Limited. https://doi.org/10.1080/10408390903537241 DOI: https://doi.org/10.1080/10408390903537241
Xie, R., & Zhang, Y. (2023). Association between 19 dietary fatty acids intake and rheumatoid arthritis: Results of a nationwide survey. In Prostaglandins, Leukotrienes and Essential Fatty Acids (Vol. 188, p. 102530). Elsevier BV. https://doi.org/10.1016/j.plefa.2022.102530 DOI: https://doi.org/10.1016/j.plefa.2022.102530
Bhat, S., Sarkar, S., Zaffar, D., Dandona, P., & Kalyani, R. R. (2023). Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: a Review of Recent Evidence. In Current Cardiology Reports (Vol. 25, Issue 2, pp. 51–65). Springer Science and Business Media LLC. https://doi.org/10.1007/s11886-022-01831-0 DOI: https://doi.org/10.1007/s11886-022-01831-0
Kaur, G., Mason, R. P., Steg, P. G., & Bhatt, D. L. (2024). Omega-3 Fatty Acids for Cardiovascular Event Lowering. In European Journal of Preventive Cardiology. Oxford University Press (OUP). https://doi.org/10.1093/eurjpc/zwae003 DOI: https://doi.org/10.1093/eurjpc/zwae003
De Marchi, F., Vignaroli, F., Mazzini, L., Comi, C., & Tondo, G. (2024). New Insights into the Relationship between Nutrition and Neuroinflammation in Alzheimer’s Disease: Preventive and Therapeutic Perspectives. In CNS & Neurological Disorders - Drug Targets (Vol. 23, Issue 5, pp. 614–627). Bentham Science Publishers Ltd. https://doi.org/10.2174/1871527322666230608110201 DOI: https://doi.org/10.2174/1871527322666230608110201
Tur, J. A., Bibiloni, M. M., Sureda, A., & Pons, A. (2012). Dietary sources of omega 3 fatty acids: public health risks and benefits. In British Journal of Nutrition (Vol. 107, Issue S2, pp. S23–S52). Cambridge University Press (CUP). https://doi.org/10.1017/s0007114512001456 DOI: https://doi.org/10.1017/S0007114512001456
Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C., & Barrio, R. J. (2020). Producing Omega-3 Polyunsaturated Fatty Acids: A Review of Sustainable Sources and Future Trends for the EPA and DHA Market. In Resources (Vol. 9, Issue 12, p. 148). MDPI AG. https://doi.org/10.3390/resources9120148 DOI: https://doi.org/10.3390/resources9120148
Lee, S. H., Kim, Y. B., Kim, D.-H., Lee, D.-W., Lee, H.-G., Jha, R., & Lee, K.-W. (2021). Dietary soluble flaxseed oils as a source of omega-3 polyunsaturated fatty acids for laying hens. In Poultry Science (Vol. 100, Issue 8, p. 101276). Elsevier BV. https://doi.org/10.1016/j.psj.2021.101276 DOI: https://doi.org/10.1016/j.psj.2021.101276
Muñoz-Tébar, N., De la Vara, J. A., Ortiz de Elguea-Culebras, G., Cano, E. L., Molina, A., Carmona, M., & Berruga, M. I. (2019). Enrichment of sheep cheese with chia (Salvia hispanica L.) oil as a source of omega-3. In LWT (Vol. 108, pp. 407–415). Elsevier BV. https://doi.org/10.1016/j.lwt.2019.03.092 DOI: https://doi.org/10.1016/j.lwt.2019.03.092
Dams, S., Holasek, S., Tsiountsioura, M., Edelsbrunner, M., Dietz, P., Koefeler, H., Malliga, D.-E., Gürbüz, A., Meier-Allard, N., Poncza, B., Lackner, S., Schwarzenberger, E., Jansenberger, Y., & Lamprecht, M. (2020). Effects of a plant-based fatty acid supplement and a powdered fruit, vegetable and berry juice concentrate on omega-3-indices and serum micronutrient concentrations in healthy subjects. In International Journal of Food Sciences and Nutrition (Vol. 71, Issue 6, pp. 769–780). Informa UK Limited. https://doi.org/10.1080/09637486.2020.1725960 DOI: https://doi.org/10.1080/09637486.2020.1725960
Otero, P., Carpena, M., Fraga‐Corral, M., Garcia‐Oliveira, P., Soria‐Lopez, A., Barba, F. J., Xiao, J., Simal‐Gandara, J., & Prieto, M. A. (2021). Aquaculture and agriculture‐by products as sustainable sources of omega‐3 fatty acids in the food industry. In eFood (Vol. 2, Issue 5, pp. 209–233). Wiley. https://doi.org/10.53365/efood.k/144603 DOI: https://doi.org/10.53365/efood.k/144603
Kumar, G. S., & Krishna, A. G. G. (2013). Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil. In Journal of Food Science and Technology (Vol. 52, Issue 2, pp. 1145–1151). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-013-1119-3 DOI: https://doi.org/10.1007/s13197-013-1119-3
Górnaś, P., Rudzińska, M., Raczyk, M., & Soliven, A. (2015). Lipophilic bioactive compounds in the oils recovered from cereal by‐products. In Journal of the Science of Food and Agriculture (Vol. 96, Issue 9, pp. 3256–3265). Wiley. https://doi.org/10.1002/jsfa.7511 DOI: https://doi.org/10.1002/jsfa.7511
Kaur, P., Waghmare, R., Kumar, V., Rasane, P., Kaur, S., & Gat, Y. (2018). Recent advances in utilization of flaxseed as potential source for value addition. In OCL (Vol. 25, Issue 3, p. A304). EDP Sciences. https://doi.org/10.1051/ocl/2018018 DOI: https://doi.org/10.1051/ocl/2018018
Kajla, P., Sharma, A., & Sood, D. R. (2014). Flaxseed—a potential functional food source. In Journal of Food Science and Technology (Vol. 52, Issue 4, pp. 1857–1871). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-014-1293-y DOI: https://doi.org/10.1007/s13197-014-1293-y
Yawale, P., Upadhyay, N., Ganguly, S., & Kumar, S., Ashish. (2022). A comprehensive review on recent novel food and industrial applications of flaxseed: 2014 onwards. In Food and Feed Research (Issue 00, pp. 16–16). Centre for Evaluation in Education and Science (CEON/CEES). https://doi.org/10.5937/ffr0-35420 DOI: https://doi.org/10.5937/ffr0-35420
Dal Bello, B., Torri, L., Piochi, M., & Zeppa, G. (2015). Healthy yogurt fortified with n-3 fatty acids from vegetable sources. In Journal of Dairy Science (Vol. 98, Issue 12, pp. 8375–8385). American Dairy Science Association. https://doi.org/10.3168/jds.2015-9688 DOI: https://doi.org/10.3168/jds.2015-9688
Lialyk, A., Pokotylo, O., Kukhtyn, M., Beyko, L., Horiuk, Y., Dobrovolska, S., & Mazur, O. (2020). Fatty acid composition of curd spread with different flax oil content. In Nova Biotechnologica et Chimica (Vol. 19, Issue 2, pp. 216–222). University of Saints Cyril and Methodius. https://doi.org/10.36547/nbc.v19i2.776 DOI: https://doi.org/10.36547/nbc.v19i2.776
Gebreyowhans, S., Lu, J., Zhang, S., Pang, X., & Lv, J. (2019). Dietary enrichment of milk and dairy products with n-3 fatty acids: A review. In International Dairy Journal (Vol. 97, pp. 158–166). Elsevier BV. https://doi.org/10.1016/j.idairyj.2019.05.011 DOI: https://doi.org/10.1016/j.idairyj.2019.05.011
Drouin, G., Catheline, D., Sinquin, A., Baudry, C., Le Ruyet, P., Rioux, V., & Legrand, P. (2018). Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats. In Frontiers in Nutrition (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fnut.2018.00042 DOI: https://doi.org/10.3389/fnut.2018.00042
Nguyen, Q. V., Malau-Aduli, B., Cavalieri, J., Malau-Aduli, A. E. O., & Nichols, P. (2019). Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption. In Nutrients (Vol. 11, Issue 4, p. 743). MDPI AG. https://doi.org/10.3390/nu11040743 DOI: https://doi.org/10.3390/nu11040743
DSTU 7357:2013. Milk and dairy products. Methods of microbiological control. National Standard of Ukraine.
DSTU EN 12824:2004. Microbiology of food products and animal feed. Horizontal method of detection of Salmonella. National Standard of Ukraine.
DSTU ISO 11290-1:2003. Microbiology of food products and animal feed. Horizontal method of detection and counting of Listeria monocytogenes. Part 1. National Standard of Ukraine.
Guinee, T. P., & Fox, P. F. (2017). Salt in Cheese: Physical, Chemical and Biological Aspects. In Cheese (pp. 317–375). Elsevier. https://doi.org/10.1016/b978-0-12-417012-4.00013-2 DOI: https://doi.org/10.1016/B978-0-12-417012-4.00013-2
Yukalo, V., Datsyshyn, K., & Storozh, L. (2019). Comparison of products of whey proteins concentrate proteolysis, obtained by different proteolytic preparations. In Eastern-European Journal of Enterprise Technologies (Vol. 5, Issue 11 (101), pp. 40–47). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2019.177314 DOI: https://doi.org/10.15587/1729-4061.2019.177314
Manuelian, C. L., Currò, S., Penasa, M., Cassandro, M., & De Marchi, M. (2017). Characterization of major and trace minerals, fatty acid composition, and cholesterol content of Protected Designation of Origin cheeses. In Journal of Dairy Science (Vol. 100, Issue 5, pp. 3384–3395). American Dairy Science Association. https://doi.org/10.3168/jds.2016-12059 DOI: https://doi.org/10.3168/jds.2016-12059
Kovalova, O., Vasylieva, N., Stankevych, S., Zabrodina, I., Haliasnyi, I., Gontar, T., Kotliar, O., Gavrish, T., Gill, M., & Karatieieva, O. (2023). Determining the effect of plasmochemically activated aqueous solutions on the bioactivation process of sea buckthorn seeds. In Eastern-European Journal of Enterprise Technologies (Vol. 2, Issue 11 (122), pp. 99–111). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2023.275548 DOI: https://doi.org/10.15587/1729-4061.2023.275548
DSTU 6003:2008. Cheese hard. General specification. National Standard of Ukraine
Kukhtyn, M., Vichko, O., Berhilevych, O., Horyuk, Y., & Horyuk, V. (2016). Main microbiological and biological properties of microbial associations of" Lactomyces tibeticus". In Research Journal of Pharmaceutical, Biological and Chemical Sciences (Vol. 7, Issue 6, pp. 1266–1272). GVGS.
Garnier, L., Valence, F., & Mounier, J. (2017). Diversity and Control of Spoilage Fungi in Dairy Products: An Update. In Microorganisms (Vol. 5, Issue 3, p. 42). MDPI AG. https://doi.org/10.3390/microorganisms5030042 DOI: https://doi.org/10.3390/microorganisms5030042
Kure, C. F., & Skaar, I. (2019). The fungal problem in cheese industry. In Current Opinion in Food Science (Vol. 29, pp. 14–19). Elsevier BV. https://doi.org/10.1016/j.cofs.2019.07.003 DOI: https://doi.org/10.1016/j.cofs.2019.07.003
Achachlouei, B. F., Hesari, J., Damirchi, S. A., Peighambardoust, S., Esmaiili, M., & Alijani, S. (2013). Production and characterization of a functional Iranian white brined cheese by replacement of dairy fat with vegetable oils. In Food Science and Technology International (Vol. 19, Issue 5, pp. 389–398). SAGE Publications. https://doi.org/10.1177/1082013212455341 DOI: https://doi.org/10.1177/1082013212455341
Garbowska, M., Berthold-Pluta, A., Stasiak-Różańska, L., Kalisz, S., & Pluta, A. (2023). The Impact of White Mulberry, Green Barley, Chia Seeds, and Spirulina on Physicochemical Characteristics, Texture, and Sensory Quality of Processed Cheeses. In Foods (Vol. 12, Issue 15, p. 2862). MDPI AG. https://doi.org/10.3390/foods12152862 DOI: https://doi.org/10.3390/foods12152862
Mironova, I. V., Nigmatyanov, A. A., Varivoda, A. A., Temerbaeva, M. V., Topuria, G. M., & Ginzburg, N. A. (2020). Soft cheese with flax seeds. In IOP Conference Series: Earth and Environmental Science (Vol. 613, Issue 1, p. 012084). IOP Publishing. https://doi.org/10.1088/1755-1315/613/1/012084 DOI: https://doi.org/10.1088/1755-1315/613/1/012084
Akl, E. M., Abdelhamid, S. M., Wagdy, S. M., & Salama, H. H. (2020). Manufacture of Functional Fat-free Cream Cheese Fortified with Probiotic Bacteria and Flaxseed Mucilage as a Fat Replacing Agent. In Current Nutrition & Food Science (Vol. 16, Issue 9, pp. 1393–1403). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573401316666200227112157 DOI: https://doi.org/10.2174/1573401316666200227112157
Garnier, L., Valence, F., Pawtowski, A., Auhustsinava-Galerne, L., Frotté, N., Baroncelli, R., Deniel, F., Coton, E., & Mounier, J. (2017). Diversity of spoilage fungi associated with various French dairy products. In International Journal of Food Microbiology (Vol. 241, pp. 191–197). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2016.10.026 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.10.026
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.