Microbiological characteristics of hard cheese with flax seeds

Authors

  • Mykola Kukhtyn Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380972392057
  • David Arutiunian Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380984639564 https://orcid.org/0009-0005-9272-0703
  • Oleg Pokotylo Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380972079605
  • Khrystyna Kravcheniuk Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380978615477 https://orcid.org/0000-0002-7547-6834
  • Volodymyr Salata Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj, Faculty of Veterinary Hygiene, Ecology and Law, Department of Veterinary-Sanitary Inspection, Pekarska, 50, 79010, Lviv, Ukraine, Tel.: +380677288933 https://orcid.org/0000-0002-7175-493X
  • Yulia Horiuk Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380976617964 https://orcid.org/0000-0002-7162-8992
  • Halyna Karpyk Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380685541587 https://orcid.org/0000-0002-5374-8368
  • Diana Dalievska Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380972110257 https://orcid.org/0000-0003-0578-9971

DOI:

https://doi.org/10.5219/1956

Keywords:

rennet cheese, cheese technology, flax seeds, cheese ripening, lactic acid microflora

Abstract

Highly nutritious dairy products such as hard cheeses are considered a good source of protein, fats, mineral substances, and vitamins and are consumed in significant quantities. At the same time, the disadvantages of cheeses include the presence of a large amount of saturated fatty acids in their composition, which are associated with the development of cardiovascular diseases. Therefore, modifying the composition of fatty acids in hard cheese by increasing the content of unsaturated fatty acids and reducing the amount of saturated fatty acids is extremely important for consumers' health. This research aimed to determine the dynamics of microbiological indicators in the ripening technology of hard rennet cheese with different contents of flax seeds as a source of omega-3 fatty acids. The technology of hard rennet cheese with 3-5% flax seed content was investigated. A 1.3 times higher content of lactic acid microflora was found in samples of hard cheese with 5% flax seeds during the first 10 days of ripening compared to the control sample of cheese. On the 60th day of ripening of cheese with a content of 5% flax seeds, the number of lactic acid bacteria was 9.4 ±0.3×109 CFU/g, and in the control cheese – 7.8 ±0.3×109 CFU/g. During the production and ripening of cheese with different content of flax seeds, no exceedance of normative values was found for the number of Enterobacteriaceae and Staphylococcus aureus bacteria. A method (washing the seeds in a sodium bicarbonate solution and drying at a temperature of 95 ±1 for 20 min) of processing flax seeds before adding them to the cheese mass was proposed, which reduced the number of mesophilic microorganisms by approximately 200 times to 3.9 ±0.1×101 CFU/ g, fungi by 160 times to 0.3 ±0.1×101 CFU/g and aerobic mesophilic bacilli by 78 times to 1.1 ±0.1×101 CFU/g. Therefore, the developed hard rennet cheese with flax seeds can be consumed as an additional source of omega-3 fatty acids and dietary fiber.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kukhtyn, M., Vichko, O., Kravets, O., Karpyk, H., Shved, O., & Novikov, V. (2019). Biochemical and microbiological changes during fermentation and storage of a fermented milk product prepared with Tibetan Kefir Starter. In Archivos Latinoamericanos de Nutrición (Vol. 68, Issue 4, pp. 336–343). Sociedad Latinoamericana de Nutricion. https://doi.org/10.37527/2018.68.4.007 DOI: https://doi.org/10.37527/2018.68.4.007

Skril, Y. (2023). Analytical review of biotechnological problem of Ukrainian hard cheeses. In Biotechnologia Acta (Vol. 16, Issue 3, pp. 5–23). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications). https://doi.org/10.15407/biotech16.03.005 DOI: https://doi.org/10.15407/biotech16.03.005

Kukhtyn, M., Salata, V., Horiuk, Y., Kovalenko, V., Ulko, L., Prosyanуi, S., Shuplyk, V., & Kornienko, L. (2021). The influence of the denitrifying strain of Staphylococcus carnosus No. 5304 on the content of nitrates in the technology of yogurt production. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 66–73). HACCP Consulting. https://doi.org/10.5219/1492 DOI: https://doi.org/10.5219/1492

Yukalo, V. G., & Storozh, L. A. (2018). Isolation of κ-CN-1P and Β-CN-5Р fractions from native casein micelles. In The Ukrainian Biochemical Journal (Vol. 90, Issue 4, pp. 74–79). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka). https://doi.org/10.15407/ubj90.04.074 DOI: https://doi.org/10.15407/ubj90.04.074

Gumus, C. E., & Gharibzahedi, S. M. T. (2021). Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. In Trends in Food Science & Technology (Vol. 110, pp. 267–279). Elsevier BV. https://doi.org/10.1016/j.tifs.2021.02.016 DOI: https://doi.org/10.1016/j.tifs.2021.02.016

Nadirova, S., & Sinyavskiy, Yu. (2023). Biotechnological approaches to the creation of new fermented dairy products. In Eurasian Journal of Applied Biotechnology (Issue 4, pp. 128–136). National Center for Biotechnology. https://doi.org/10.11134/btp.4.2022.16 DOI: https://doi.org/10.11134/btp.4.2022.16

Arioui, F., Ait Saada, D., & Cheriguene, A. (2016). Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis. In Food Science & Nutrition (Vol. 5, Issue 2, pp. 358–364). Wiley. https://doi.org/10.1002/fsn3.400 DOI: https://doi.org/10.1002/fsn3.400

Dabija, A., Codină, G. G., Ropciuc, S., Gâtlan, A.-M., & Rusu, L. (2018). Assessment of the Antioxidant Activity and Quality Attributes of Yogurt Enhanced with Wild Herbs Extracts. In Journal of Food Quality (Vol. 2018, pp. 1–12). Hindawi Limited. https://doi.org/10.1155/2018/5329386 DOI: https://doi.org/10.1155/2018/5329386

Yousefi, M., & Jafari, S. M. (2019). Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties. In Trends in Food Science & Technology (Vol. 88, pp. 468–483). Elsevier BV. https://doi.org/10.1016/j.tifs.2019.04.015 DOI: https://doi.org/10.1016/j.tifs.2019.04.015

Meybodi, N. M., Mortazavian, A. M., Arab, M., & Nematollahi, A. (2020). Probiotic viability in yoghurt: A review of influential factors. In International Dairy Journal (Vol. 109, p. 104793). Elsevier BV. https://doi.org/10.1016/j.idairyj.2020.104793 DOI: https://doi.org/10.1016/j.idairyj.2020.104793

Farahat, E. S. A., Mohamed, A. G., El-Loly, M. M., & Gafour, W. A. M. S. (2021). Innovative vegetables-processed cheese: I. Physicochemical, rheological and sensory characteristics. In Food Bioscience (Vol. 42, p. 101128). Elsevier BV. https://doi.org/10.1016/j.fbio.2021.101128 DOI: https://doi.org/10.1016/j.fbio.2021.101128

Salehi, F. (2021). Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. In Food Science & Nutrition (Vol. 9, Issue 8, pp. 4666–4686). Wiley. https://doi.org/10.1002/fsn3.2430 DOI: https://doi.org/10.1002/fsn3.2430

Kamath, R., Basak, S., & Gokhale, J. (2022). Recent trends in the development of healthy and functional cheese analogues-a review. In LWT (Vol. 155, p. 112991). Elsevier BV. https://doi.org/10.1016/j.lwt.2021.112991 DOI: https://doi.org/10.1016/j.lwt.2021.112991

Sharma, K. D., Stähler, K., Smith, B., & Melton, L. (2011). Antioxidant capacity, polyphenolics and pigments of broccoli-cheese powder blends. In Journal of Food Science and Technology (Vol. 48, Issue 4, pp. 510–514). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-010-0211-1 DOI: https://doi.org/10.1007/s13197-010-0211-1

Lavelli, V., Sri Harsha, P. S. C., Torri, L., & Zeppa, G. (2014). Use of winemaking by-products as an ingredient for tomato puree: The effect of particle size on product quality. In Food Chemistry (Vol. 152, pp. 162–168). Elsevier BV. https://doi.org/10.1016/j.foodchem.2013.11.103 DOI: https://doi.org/10.1016/j.foodchem.2013.11.103

Marchiani, R., Bertolino, M., Ghirardello, D., McSweeney, P. L. H., & Zeppa, G. (2015). Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. In Journal of Food Science and Technology (Vol. 53, Issue 3, pp. 1585–1596). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-015-2105-8 DOI: https://doi.org/10.1007/s13197-015-2105-8

Marchiani, R., Bertolino, M., Belviso, S., Giordano, M., Ghirardello, D., Torri, L., Piochi, M., & Zeppa, G. (2015). Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, Microbiological and Sensory Properties. In Journal of Food Quality (Vol. 39, Issue 2, pp. 77–89). Wiley. https://doi.org/10.1111/jfq.12181 DOI: https://doi.org/10.1111/jfq.12181

Slozhenkina, M. I., Gorlov, I. F., Kryuchkova, V. V., Serkova, A. E., Ryaskova, A. D., & Belik, S. N. (2019). Vegetable ingredient in cheese product. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 13, Issue 1, pp. 1018–1025). HACCP Consulting. https://doi.org/10.5219/1207 DOI: https://doi.org/10.5219/1207

El-Sayed, S. M. (2020). Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. In Heliyon (Vol. 6, Issue 1, p. e03278). Elsevier BV. https://doi.org/10.1016/j.heliyon.2020.e03278 DOI: https://doi.org/10.1016/j.heliyon.2020.e03278

Alenisan, M. A., Alqattan, H. H., Tolbah, L. S., & Shori, A. B. (2017). Antioxidant properties of dairy products fortified with natural additives: A review. In Journal of the Association of Arab Universities for Basic and Applied Sciences (Vol. 24, Issue 1, pp. 101–106). Informa UK Limited. https://doi.org/10.1016/j.jaubas.2017.05.001 DOI: https://doi.org/10.1016/j.jaubas.2017.05.001

Grażyna, C., Hanna, C., Adam, A., & Magdalena, B. M. (2017). Natural antioxidants in milk and dairy products. In International Journal of Dairy Technology (Vol. 70, Issue 2, pp. 165–178). Wiley. https://doi.org/10.1111/1471-0307.12359 DOI: https://doi.org/10.1111/1471-0307.12359

Adetuyi, B. O., Olajide, P. A., Adetunji, C. O., & Adetunji, J. B. (2024). Beneficial uses of essential oils in diary products. Applications of Essential Oils in the Food Industry. https://doi.org/10.1016/B978-0-323-98340-2.00021-3 DOI: https://doi.org/10.1016/B978-0-323-98340-2.00021-3

Baba, W. N., Jan, K., Punoo, H. A., Wani, T. A., Dar, M. M., & Masoodi, F. A. (2018). Techno-functional properties of yoghurts fortified with walnut and flaxseed oil emulsions in guar gum. In LWT (Vol. 92, pp. 242–249). Elsevier BV. https://doi.org/10.1016/j.lwt.2018.02.007 DOI: https://doi.org/10.1016/j.lwt.2018.02.007

Rao, S., Radhakrishnan, P., Valiathan, S., & M, S. (2023). Rosehip oil nanoemulsion as a stable delivery system for omega-3 fatty acids to enhance the nutritional value of yogurt. In Food Chemistry Advances (Vol. 3, p. 100545). Elsevier BV. https://doi.org/10.1016/j.focha.2023.100545 DOI: https://doi.org/10.1016/j.focha.2023.100545

Ganesan, B., Brothersen, C., & McMahon, D. J. (2013). Fortification of Foods with Omega-3 Polyunsaturated Fatty Acids. In Critical Reviews in Food Science and Nutrition (Vol. 54, Issue 1, pp. 98–114). Informa UK Limited. https://doi.org/10.1080/10408398.2011.578221 DOI: https://doi.org/10.1080/10408398.2011.578221

Sąsiadek, W., Michalski, J., & Ulatowski, P. (2018). Charakterystyka nienasyconych kwasów tłuszczowych zawartych w rybach. In Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu (Issue 542, pp. 161–176). Wroclaw University of Economics and Business. https://doi.org/10.15611/pn.2018.542.12 DOI: https://doi.org/10.15611/pn.2018.542.12

Briggs, M., Petersen, K., & Kris-Etherton, P. (2017). Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. In Healthcare (Vol. 5, Issue 2, p. 29). MDPI AG. https://doi.org/10.3390/healthcare5020029 DOI: https://doi.org/10.3390/healthcare5020029

Feizollahi, E., Hadian, Z., & Honarvar, Z. (2018). Food Fortification with Omega-3 Fatty Acids; Microencapsulation as an Addition Method. In Current Nutrition & Food Science (Vol. 14, Issue 2, pp. 90–103). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573401313666170728151350 DOI: https://doi.org/10.2174/1573401313666170728151350

Lock, A. L., & Bauman, D. E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. In Lipids (Vol. 39, Issue 12, pp. 1197–1206). Wiley. https://doi.org/10.1007/s11745-004-1348-6 DOI: https://doi.org/10.1007/s11745-004-1348-6

Russo, G. L. (2009). Dietary n−6 and n−3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. In Biochemical Pharmacology (Vol. 77, Issue 6, pp. 937–946). Elsevier BV. https://doi.org/10.1016/j.bcp.2008.10.020 DOI: https://doi.org/10.1016/j.bcp.2008.10.020

Iafelice, G., Caboni, M. F., Cubadda, R., Di Criscio, T., Trivisonno, M. C., & Marconi, E. (2008). Development of Functional Spaghetti Enriched with Long Chain Omega‐3 Fatty Acids. In Cereal Chemistry (Vol. 85, Issue 2, pp. 146–151). Wiley. https://doi.org/10.1094/cchem-85-2-0146 DOI: https://doi.org/10.1094/CCHEM-85-2-0146

Singh, K. K., Mridula, D., Rehal, J., & Barnwal, P. (2011). Flaxseed: A Potential Source of Food, Feed and Fiber. In Critical Reviews in Food Science and Nutrition (Vol. 51, Issue 3, pp. 210–222). Informa UK Limited. https://doi.org/10.1080/10408390903537241 DOI: https://doi.org/10.1080/10408390903537241

Xie, R., & Zhang, Y. (2023). Association between 19 dietary fatty acids intake and rheumatoid arthritis: Results of a nationwide survey. In Prostaglandins, Leukotrienes and Essential Fatty Acids (Vol. 188, p. 102530). Elsevier BV. https://doi.org/10.1016/j.plefa.2022.102530 DOI: https://doi.org/10.1016/j.plefa.2022.102530

Bhat, S., Sarkar, S., Zaffar, D., Dandona, P., & Kalyani, R. R. (2023). Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: a Review of Recent Evidence. In Current Cardiology Reports (Vol. 25, Issue 2, pp. 51–65). Springer Science and Business Media LLC. https://doi.org/10.1007/s11886-022-01831-0 DOI: https://doi.org/10.1007/s11886-022-01831-0

Kaur, G., Mason, R. P., Steg, P. G., & Bhatt, D. L. (2024). Omega-3 Fatty Acids for Cardiovascular Event Lowering. In European Journal of Preventive Cardiology. Oxford University Press (OUP). https://doi.org/10.1093/eurjpc/zwae003 DOI: https://doi.org/10.1093/eurjpc/zwae003

De Marchi, F., Vignaroli, F., Mazzini, L., Comi, C., & Tondo, G. (2024). New Insights into the Relationship between Nutrition and Neuroinflammation in Alzheimer’s Disease: Preventive and Therapeutic Perspectives. In CNS & Neurological Disorders - Drug Targets (Vol. 23, Issue 5, pp. 614–627). Bentham Science Publishers Ltd. https://doi.org/10.2174/1871527322666230608110201 DOI: https://doi.org/10.2174/1871527322666230608110201

Tur, J. A., Bibiloni, M. M., Sureda, A., & Pons, A. (2012). Dietary sources of omega 3 fatty acids: public health risks and benefits. In British Journal of Nutrition (Vol. 107, Issue S2, pp. S23–S52). Cambridge University Press (CUP). https://doi.org/10.1017/s0007114512001456 DOI: https://doi.org/10.1017/S0007114512001456

Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C., & Barrio, R. J. (2020). Producing Omega-3 Polyunsaturated Fatty Acids: A Review of Sustainable Sources and Future Trends for the EPA and DHA Market. In Resources (Vol. 9, Issue 12, p. 148). MDPI AG. https://doi.org/10.3390/resources9120148 DOI: https://doi.org/10.3390/resources9120148

Lee, S. H., Kim, Y. B., Kim, D.-H., Lee, D.-W., Lee, H.-G., Jha, R., & Lee, K.-W. (2021). Dietary soluble flaxseed oils as a source of omega-3 polyunsaturated fatty acids for laying hens. In Poultry Science (Vol. 100, Issue 8, p. 101276). Elsevier BV. https://doi.org/10.1016/j.psj.2021.101276 DOI: https://doi.org/10.1016/j.psj.2021.101276

Muñoz-Tébar, N., De la Vara, J. A., Ortiz de Elguea-Culebras, G., Cano, E. L., Molina, A., Carmona, M., & Berruga, M. I. (2019). Enrichment of sheep cheese with chia (Salvia hispanica L.) oil as a source of omega-3. In LWT (Vol. 108, pp. 407–415). Elsevier BV. https://doi.org/10.1016/j.lwt.2019.03.092 DOI: https://doi.org/10.1016/j.lwt.2019.03.092

Dams, S., Holasek, S., Tsiountsioura, M., Edelsbrunner, M., Dietz, P., Koefeler, H., Malliga, D.-E., Gürbüz, A., Meier-Allard, N., Poncza, B., Lackner, S., Schwarzenberger, E., Jansenberger, Y., & Lamprecht, M. (2020). Effects of a plant-based fatty acid supplement and a powdered fruit, vegetable and berry juice concentrate on omega-3-indices and serum micronutrient concentrations in healthy subjects. In International Journal of Food Sciences and Nutrition (Vol. 71, Issue 6, pp. 769–780). Informa UK Limited. https://doi.org/10.1080/09637486.2020.1725960 DOI: https://doi.org/10.1080/09637486.2020.1725960

Otero, P., Carpena, M., Fraga‐Corral, M., Garcia‐Oliveira, P., Soria‐Lopez, A., Barba, F. J., Xiao, J., Simal‐Gandara, J., & Prieto, M. A. (2021). Aquaculture and agriculture‐by products as sustainable sources of omega‐3 fatty acids in the food industry. In eFood (Vol. 2, Issue 5, pp. 209–233). Wiley. https://doi.org/10.53365/efood.k/144603 DOI: https://doi.org/10.53365/efood.k/144603

Kumar, G. S., & Krishna, A. G. G. (2013). Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil. In Journal of Food Science and Technology (Vol. 52, Issue 2, pp. 1145–1151). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-013-1119-3 DOI: https://doi.org/10.1007/s13197-013-1119-3

Górnaś, P., Rudzińska, M., Raczyk, M., & Soliven, A. (2015). Lipophilic bioactive compounds in the oils recovered from cereal by‐products. In Journal of the Science of Food and Agriculture (Vol. 96, Issue 9, pp. 3256–3265). Wiley. https://doi.org/10.1002/jsfa.7511 DOI: https://doi.org/10.1002/jsfa.7511

Kaur, P., Waghmare, R., Kumar, V., Rasane, P., Kaur, S., & Gat, Y. (2018). Recent advances in utilization of flaxseed as potential source for value addition. In OCL (Vol. 25, Issue 3, p. A304). EDP Sciences. https://doi.org/10.1051/ocl/2018018 DOI: https://doi.org/10.1051/ocl/2018018

Kajla, P., Sharma, A., & Sood, D. R. (2014). Flaxseed—a potential functional food source. In Journal of Food Science and Technology (Vol. 52, Issue 4, pp. 1857–1871). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-014-1293-y DOI: https://doi.org/10.1007/s13197-014-1293-y

Yawale, P., Upadhyay, N., Ganguly, S., & Kumar, S., Ashish. (2022). A comprehensive review on recent novel food and industrial applications of flaxseed: 2014 onwards. In Food and Feed Research (Issue 00, pp. 16–16). Centre for Evaluation in Education and Science (CEON/CEES). https://doi.org/10.5937/ffr0-35420 DOI: https://doi.org/10.5937/ffr0-35420

Dal Bello, B., Torri, L., Piochi, M., & Zeppa, G. (2015). Healthy yogurt fortified with n-3 fatty acids from vegetable sources. In Journal of Dairy Science (Vol. 98, Issue 12, pp. 8375–8385). American Dairy Science Association. https://doi.org/10.3168/jds.2015-9688 DOI: https://doi.org/10.3168/jds.2015-9688

Lialyk, A., Pokotylo, O., Kukhtyn, M., Beyko, L., Horiuk, Y., Dobrovolska, S., & Mazur, O. (2020). Fatty acid composition of curd spread with different flax oil content. In Nova Biotechnologica et Chimica (Vol. 19, Issue 2, pp. 216–222). University of Saints Cyril and Methodius. https://doi.org/10.36547/nbc.v19i2.776 DOI: https://doi.org/10.36547/nbc.v19i2.776

Gebreyowhans, S., Lu, J., Zhang, S., Pang, X., & Lv, J. (2019). Dietary enrichment of milk and dairy products with n-3 fatty acids: A review. In International Dairy Journal (Vol. 97, pp. 158–166). Elsevier BV. https://doi.org/10.1016/j.idairyj.2019.05.011 DOI: https://doi.org/10.1016/j.idairyj.2019.05.011

Drouin, G., Catheline, D., Sinquin, A., Baudry, C., Le Ruyet, P., Rioux, V., & Legrand, P. (2018). Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats. In Frontiers in Nutrition (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fnut.2018.00042 DOI: https://doi.org/10.3389/fnut.2018.00042

Nguyen, Q. V., Malau-Aduli, B., Cavalieri, J., Malau-Aduli, A. E. O., & Nichols, P. (2019). Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption. In Nutrients (Vol. 11, Issue 4, p. 743). MDPI AG. https://doi.org/10.3390/nu11040743 DOI: https://doi.org/10.3390/nu11040743

DSTU 7357:2013. Milk and dairy products. Methods of microbiological control. National Standard of Ukraine.

DSTU EN 12824:2004. Microbiology of food products and animal feed. Horizontal method of detection of Salmonella. National Standard of Ukraine.

DSTU ISO 11290-1:2003. Microbiology of food products and animal feed. Horizontal method of detection and counting of Listeria monocytogenes. Part 1. National Standard of Ukraine.

Guinee, T. P., & Fox, P. F. (2017). Salt in Cheese: Physical, Chemical and Biological Aspects. In Cheese (pp. 317–375). Elsevier. https://doi.org/10.1016/b978-0-12-417012-4.00013-2 DOI: https://doi.org/10.1016/B978-0-12-417012-4.00013-2

Yukalo, V., Datsyshyn, K., & Storozh, L. (2019). Comparison of products of whey proteins concentrate proteolysis, obtained by different proteolytic preparations. In Eastern-European Journal of Enterprise Technologies (Vol. 5, Issue 11 (101), pp. 40–47). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2019.177314 DOI: https://doi.org/10.15587/1729-4061.2019.177314

Manuelian, C. L., Currò, S., Penasa, M., Cassandro, M., & De Marchi, M. (2017). Characterization of major and trace minerals, fatty acid composition, and cholesterol content of Protected Designation of Origin cheeses. In Journal of Dairy Science (Vol. 100, Issue 5, pp. 3384–3395). American Dairy Science Association. https://doi.org/10.3168/jds.2016-12059 DOI: https://doi.org/10.3168/jds.2016-12059

Kovalova, O., Vasylieva, N., Stankevych, S., Zabrodina, I., Haliasnyi, I., Gontar, T., Kotliar, O., Gavrish, T., Gill, M., & Karatieieva, O. (2023). Determining the effect of plasmochemically activated aqueous solutions on the bioactivation process of sea buckthorn seeds. In Eastern-European Journal of Enterprise Technologies (Vol. 2, Issue 11 (122), pp. 99–111). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2023.275548 DOI: https://doi.org/10.15587/1729-4061.2023.275548

DSTU 6003:2008. Cheese hard. General specification. National Standard of Ukraine

Kukhtyn, M., Vichko, O., Berhilevych, O., Horyuk, Y., & Horyuk, V. (2016). Main microbiological and biological properties of microbial associations of" Lactomyces tibeticus". In Research Journal of Pharmaceutical, Biological and Chemical Sciences (Vol. 7, Issue 6, pp. 1266–1272). GVGS.

Garnier, L., Valence, F., & Mounier, J. (2017). Diversity and Control of Spoilage Fungi in Dairy Products: An Update. In Microorganisms (Vol. 5, Issue 3, p. 42). MDPI AG. https://doi.org/10.3390/microorganisms5030042 DOI: https://doi.org/10.3390/microorganisms5030042

Kure, C. F., & Skaar, I. (2019). The fungal problem in cheese industry. In Current Opinion in Food Science (Vol. 29, pp. 14–19). Elsevier BV. https://doi.org/10.1016/j.cofs.2019.07.003 DOI: https://doi.org/10.1016/j.cofs.2019.07.003

Achachlouei, B. F., Hesari, J., Damirchi, S. A., Peighambardoust, S., Esmaiili, M., & Alijani, S. (2013). Production and characterization of a functional Iranian white brined cheese by replacement of dairy fat with vegetable oils. In Food Science and Technology International (Vol. 19, Issue 5, pp. 389–398). SAGE Publications. https://doi.org/10.1177/1082013212455341 DOI: https://doi.org/10.1177/1082013212455341

Garbowska, M., Berthold-Pluta, A., Stasiak-Różańska, L., Kalisz, S., & Pluta, A. (2023). The Impact of White Mulberry, Green Barley, Chia Seeds, and Spirulina on Physicochemical Characteristics, Texture, and Sensory Quality of Processed Cheeses. In Foods (Vol. 12, Issue 15, p. 2862). MDPI AG. https://doi.org/10.3390/foods12152862 DOI: https://doi.org/10.3390/foods12152862

Mironova, I. V., Nigmatyanov, A. A., Varivoda, A. A., Temerbaeva, M. V., Topuria, G. M., & Ginzburg, N. A. (2020). Soft cheese with flax seeds. In IOP Conference Series: Earth and Environmental Science (Vol. 613, Issue 1, p. 012084). IOP Publishing. https://doi.org/10.1088/1755-1315/613/1/012084 DOI: https://doi.org/10.1088/1755-1315/613/1/012084

Akl, E. M., Abdelhamid, S. M., Wagdy, S. M., & Salama, H. H. (2020). Manufacture of Functional Fat-free Cream Cheese Fortified with Probiotic Bacteria and Flaxseed Mucilage as a Fat Replacing Agent. In Current Nutrition & Food Science (Vol. 16, Issue 9, pp. 1393–1403). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573401316666200227112157 DOI: https://doi.org/10.2174/1573401316666200227112157

Garnier, L., Valence, F., Pawtowski, A., Auhustsinava-Galerne, L., Frotté, N., Baroncelli, R., Deniel, F., Coton, E., & Mounier, J. (2017). Diversity of spoilage fungi associated with various French dairy products. In International Journal of Food Microbiology (Vol. 241, pp. 191–197). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2016.10.026 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.10.026

Downloads

Published

2024-03-05

How to Cite

Kukhtyn, M., Arutiunian, D., Pokotylo, O., Kravcheniuk, K., Salata, V., Horiuk, Y., Karpyk, H., & Dalievska, D. (2024). Microbiological characteristics of hard cheese with flax seeds. Potravinarstvo Slovak Journal of Food Sciences, 18, 281–296. https://doi.org/10.5219/1956

Most read articles by the same author(s)