Changes in organoleptic, microbiological and biochemical properties of kefir with iodine addition during the storage
DOI:
https://doi.org/10.5219/1679Keywords:
kefir, iodide concentrate, titrated acidity, lactic acid microorganisms, storage temperatureAbstract
Iodine is a vital trace element that must be constantly and daily supplied with food to the organism. Currently, the amount of food that can provide the organism with the required amount of iodine is insufficient. The purpose of the study was to investigate changes in organoleptic, microbiological, and biochemical parameters of kefir made with the addition of iodine during its refrigeration storage. It was found that during the storage of samples of kefir with iodine there is a slowdown in the reproduction of lactic acid bacteria, compared with the control sample. In particular, the number of lactic acid bacteria during the first two days of storage increased 1.3 times in the experimental sample and 1.5 times in the control sample of kefir. After 12 days of storage, the number of lactobacilli in the test sample of kefir increased 2.5 times, and in the control 3.2 times, compared with the amount in fresh kefir. Similar patterns were observed in determining the development of yeast. In particular, the reproduction rate of yeast in the control sample of kefir was, on average, 1.3 times faster (8 – 12 days), compared with yeast in the experimental sample. It was also found that during the 12-day storage period at a temperature of +6 °C, the titrated acidity in kefir with iodine increased 1.4 times, and in the control 1.6 times and was 130.5 °T and 154.1 °T, respectively. At such acidity values, the test sample of kefir still met the requirements of the standard, and the control was 24.1 °T higher. In this case, kefir containing iodide had better organoleptic characteristics during 12 days of storage. Produced kefir with the addition of iodine can be considered a functional product to provide the population with sufficient iodine.
Downloads
Metrics
References
Abel, M. H., Caspersen, I. H., Meltzer, H. M., Haugen, M., Brandlistuen, R. E., Aase, H., Brantsæter, A. L. 2017. Suboptimal maternal iodine intake is associated with impaired child neurodevelopment at 3 years of age in the Norwegian Mother and Child Cohort Study. The Journal of nutrition, vol. 147, no. 7, p. 1314-1324. https://doi.org/10.3945/jn.117.250456 DOI: https://doi.org/10.3945/jn.117.250456
Ahvanooei, M. R. R., Norouzian, M. A., Hedayati, M., Vahmani, P. 2021. Effect of potassium iodide supplementation and teat-dipping on iodine status in dairy cows and milk iodine levels. Domestic Animal Endocrinology, vol. 74, p. 106504. https://doi.org/10.1016/j.domaniend.2020.106504 DOI: https://doi.org/10.1016/j.domaniend.2020.106504
Albracht-Schulte, K., Kalupahana, N. S., Ramalingam, L., Wang, S., Rahman, S. M., Robert-McComb, J., Moustaid-Moussa, N. 2018. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. The Journal of nutritional biochemistry, vol. 58, p. 1-16. https://doi.org/10.1016/j.jnutbio.2018.02.012 DOI: https://doi.org/10.1016/j.jnutbio.2018.02.012
Bath, S. C., Rayman, M. P. 2013. Iodine deficiency in the U.K.: an overlooked cause of impaired neurodevelopment? Proceedings of the Nutrition Society, vol. 72, no. 2, p. 226-235. https://doi.org/10.1017/S0029665113001006 DOI: https://doi.org/10.1017/S0029665113001006
Dahl, L., Johansson, L., Julshamn, K., Meltzer, H. M. 2004. The iodine content of Norwegian foods and diets. Public Health Nutrition, vol. 7, no. 4, p. 569-576. https://doi.org/10.1079/PHN2003554 DOI: https://doi.org/10.1079/PHN2003554
Dal Bello, B., Torri, L., Piochi, M., Bertolino, M., Zeppa, G. 2017. Fresh cheese as a vehicle for polyunsaturated fatty acids integration: effect on physico-chemical, microbiological and sensory characteristics. International journal of food sciences and nutrition, vol. 68, no. 7, p. 800-810. https://doi.org/10.1080/09637486.2017.1301891 DOI: https://doi.org/10.1080/09637486.2017.1301891
DSTU, 2003. DSTU IDF 122C:2003. Milk and dairy products. Preparation of samples and dilutions for microbiological research. National Standard of Ukraine.
DSTU, 2005. DSTU 4417:2005. Kefir. Specifications. National Standard of Ukraine.
Federal Commission for Nutrition, 2013. Iodine Supply in Switzerland: Current Status and Recommendations. Expert Report of the FCN. Zurich: Federal Office of Public Health.
Haldimann, M., Alt, A., Blanc, A., Blondeau, K. 2005. Iodine content of food groups. Journal of Food Composition and Analysis, vol. 18, no. 6, p. 461-471. https://doi.org/10.1016/j.jfca.2004.06.003 DOI: https://doi.org/10.1016/j.jfca.2004.06.003
Hynes, K. L., Otahal, P., Hay, I., Burgess, J. R. 2013. Mild iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational iodine cohort. Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 5, p. 1954-1962. https://doi.org/10.1210/jc.2012-4249 DOI: https://doi.org/10.1210/jc.2012-4249
IS, 2004. Interstate standard 3624-92. Milk and milk products.Titrimetric methods of acidity determination.
Jahreis, G., Leiterer, M., Fechner, A. 2007. Jodmangelprophylaxe durch richtige Ernährung. Prävention und Gesundheitsförderung, vol. 2, no. 3, p. 179-184. https://doi.org/10.1007/s11553-007-0068-y DOI: https://doi.org/10.1007/s11553-007-0068-y
Kopchak, N. H., Pokotylo, O. S. 2018b. Age-specific features of fatty acid composition of lipid serum in rats with obesity under the influence of iodine. Medical and Clinical Chemistry, vol. 3, no. 20, p. 63-69. https://doi.org/10.11603/mcch.2410-681X.2018.v0.i3.9567 DOI: https://doi.org/10.11603/mcch.2410-681X.2018.v0.i3.9567
Kopchak, N. H., Pokotylo, O. S., Kukhtyn, M. D., Yaroshenko, T. Y., Kulitska, M. I., Bandas, I. A. 2018а. Age and sex characteristics of thyroxine and triiodothyronine content in the blood of white rats with experimental alimentary obesity under the influence of iodine. Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 9, no. 5, p. 2392-2397.
Kopchak, N. H., Pokotylo, О. S., Kukhtyn, M. D., Koval, M. I. 2017. Influence of iodine on the indicators of lipid profile of rats blood of different age in experimental obesity. Medicinal and clinical chemistry, vol. 19, no. 4, p. 123-128. https://doi.org/10.11603/mcch.2410-681X.2017.v0.i4.8437 DOI: https://doi.org/10.11603/mcch.2410-681X.2017.v0.i4.8437
Kukhtyn, M., Salata, V., Horiuk, Y., Kovalenko, V., Ulko, L., Prosyanуi S., Shuplyk, V., Kornienko, L. 2021. The influence of the denitrifying strain of Staphylococcus carnosus No. 5304 on the content of nitrates in the technology of yogurt production. Potravinarstvo Slovak Journal of Food Sciences, vol. 15, p. 66-73. https://doi.org/10.5219/1492 DOI: https://doi.org/10.5219/1492
Kukhtyn, M., Vichk, O., Horyuk, Y., Shved, O., Novikov, V. 2018a. Some probiotic characteristics of a fermented milk product based on microbiota of “Tibetan kefir grains” cultivated in Ukrainian household. Journal of Food Science and Technology, vol. 55, no. 1, p. 252-257. https://doi.org/10.1007/s13197-017-2931-y DOI: https://doi.org/10.1007/s13197-017-2931-y
Kukhtyn, M., Vichko, O., Kravets, O., Karpyk, H., Shved, O., Novikov, V. 2018b. Biochemical and microbiological changes during fermentation and storage of a fermented milk product prepared with Tibetan Kefir Starter. Archivos Latinoamericanos de Nutricion, vol. 68, no. 4, p. 1-6.
Lialyk, A., Pokotylo, O., Kukhtyn, M., Beyko, L., Horiuk, Y., Dobrovolska, S., Mazur, O. 2020. Fatty acid composition of curd spread with different flax oil content. Nova Biotechnologica et Chimica, vol. 19, no. 2, p. 216-222. https://doi.org/10.36547/nbc.v19i2.776 DOI: https://doi.org/10.36547/nbc.v19i2.776
Mikláš, Š., Tančin, V., Toman, R., & Trávníček, J. 2021. Iodine concentration in milk and human nutrition: A review. Czech Journal of Animal Science, vol. 66, no. 6, p. 189-199. https://doi.org/10.17221/167/2020-CJAS DOI: https://doi.org/10.17221/167/2020-CJAS
Nerhus, I., Wik Markhus, M., Nilsen, B. M., Øyen, J., Maage, A., Ødegård, E. R., Midtbø, L. K., Frantzen. S., Kögel, T., Graff, I. E., Lie, Ø., Dahl, L., Kjellevold, M. 2018. Iodine content of six fish species, Norwegian dairy products and hen's egg. Food & Nutrition Research, vol. 62, p. 1-13. https://doi.org/10.29219/fnr.v62.1291 DOI: https://doi.org/10.29219/fnr.v62.1291
Norouzian, M. A. 2011. Iodine in raw and pasteurized milk of dairy cows fed different amounts of potassium iodide. Biological Trace Element Research, vol. 139, p. 160-167. https://doi.org/10.1007/s12011-010-8651-z DOI: https://doi.org/10.1007/s12011-010-8651-z
Nystrom, H. F., Brantsaeter, A. L., Erlund, I., Gunnarsdottir, I., Hulthen, L., Laurberg, P., Meltzer, H. M. 2016. Iodine status in the Nordic countries – past and present. Food & Nutrition Research, vol. 60, p. 1-15. https://doi.org/10.3402/fnr.v60.31969 DOI: https://doi.org/10.3402/fnr.v60.31969
Rasmussen, L. B., Carle, A., Jorgensen, T., Knudsen, N., Laurberg, P., Pedersen, I. B., Ovesen, L. 2008. Iodine intake before and after mandatory iodization in Denmark: results from the Danish Investigation of Iodine. Intake and Thyroid Diseases (DanThyr) study. British Journal of Nutrition, vol. 100, no. 1, p. 166-173. https://doi.org/10.1017/S0007114507886387 DOI: https://doi.org/10.1017/S0007114507886387
Rasmussen, L. B., Carlé, A., Jørgensen, T., Knuthsen, P., Krejbjerg, A., Perrild, H., Ovesen, L. 2014. Iodine excretion has decreased in Denmark between 2004 and 2010–the importance of iodine content in milk. British Journal of Nutrition, vol. 112, no. 12, p. 1993-2001. https://doi.org/10.1017/S0007114514003225 DOI: https://doi.org/10.1017/S0007114514003225
Reijden, O. L., Zimmermann, M. B., Galetti, V. 2017. Iodine in dairy milk: Sources, concen- trations and importance to human health. Best Pract. Res. Clin. Endocrinol. Metabs., vol. 31, 385-395. https://doi.org/10.1016/j.beem.2017.10.004 DOI: https://doi.org/10.1016/j.beem.2017.10.004
Ryzhkova, T., Bondarenko, T., Dyukareva, G., Biletskaya, Y. 2017. Development of a technology with an iodine-containing additive to produce kefir from goat milk. Easstern-European Journal of Enterprise Technologies, vol. 3/11, no. 87, p. 37-44. https://doi.org/10.15587/1729-4061.2017.103824 DOI: https://doi.org/10.15587/1729-4061.2017.103824
Soriguer, F., Gutierrez-Repiso, C., Gonzalez-Romero, S., Olveira, G., Garriga, M. J., Velasco, I., Endocrinology, S. 2011. Iodine concentration in cow’s milk and its relation with urinary iodine concentrations in the population. Clinical Nutrition, vol. 30, no. 1, p. 44-48. https://doi.org/10.1016/j.clnu.2010.07.001 DOI: https://doi.org/10.1016/j.clnu.2010.07.001
Stroi, O. A., Slipachuk, L. V., Kazakova L. M. 2016. The Study of Iodine Status among Schoolchildren from Kyiv and Ways to Correct the Revealed Violations. Clinical Pediatrics, vol. 5, no. 73, p. 72-75. https://doi.org/10.22141/2224-0551.5.73.2016.78304 DOI: https://doi.org/10.22141/2224-0551.5.73.2016.78304
TC (Technical conditions) 14326060.003-98. Raw materials for production of iodized products "Iodis concentrate", 2001, 1-15.
Van der Reijden, O. L., Galetti, V., Herter-Aeberli, I., Zimmermann, M. B., Zeder, C., Krzystek, A., Schlegel, P. 2019. Effects of feed iodine concentrations and milk processing on iodine concentrations of cows’ milk and dairy products, and potential impact on iodine intake in Swiss adults. British Journal of Nutrition, vol. 122, no. 2, p. 172-185. https://doi.org/10.1017/S0007114519001041 DOI: https://doi.org/10.1017/S0007114519001041
Van der Reijden, O. L., Zimmermann, M. B., Galetti, V. 2017. Iodine in dairy milk: Sources, concentrations and importance to human health. Best Practice & Research Clinical Endocrinology & Metabolism, vol. 31, no. 4, p. 385-395. https://doi.org/10.1016/j.beem.2017.10.004 DOI: https://doi.org/10.1016/j.beem.2017.10.004
Walther, B., Wechsler, D., Schlegel, P., Haldimann, M. 2018. Iodine in Swiss milk depending on production (conventional versus organic) and on processing (raw versus UHT) and the contribution of milk to the human iodine supply. Journal of Trace Elements in Medicine and Biology : Organ of the Society for Minerals and Trace Elements (GMS), vol. 46, p. 138-143. https://doi.org/10.1016/j.jtemb.2017.12.004 DOI: https://doi.org/10.1016/j.jtemb.2017.12.004
Wheeler, S. M., Fleet, G. H., Ashley, R. J. 1983. Effect of processing upon concentration and distribution of natural and iodophor-derived iodine in milk. Journal of Dairy Science, vol. 66, p. 187-195. https://doi.org/10.3168/jds.S0022-0302(83)81776-7 DOI: https://doi.org/10.3168/jds.S0022-0302(83)81776-7
WHO, UNICEF and ICCIDD, 2007. Assessment of iodine deficiency disorders and monitoring their elimination. 3rd ed. Geneva, Switzerland : WHO, 2007.
Yukalo, V., Datsyshyn, K., Storozh, L. 2019. Comparison of products of whey proteins concentrate proteolysis, obtained by different proteolytic preparations. Eastern-European Journal of Enterprise Technologies, vol. 5, no. 11-101, p. 40-47. https://doi.org/10.15587/1729-4061.2019.177314 DOI: https://doi.org/10.15587/1729-4061.2019.177314
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.