Square wave voltammetry at carbon paste electrode modified with surfactant for alpha tocopheryl acetate determination in cosmetics
DOI:
https://doi.org/10.5219/881Keywords:
carbon paste electrode, surfactant, tocopheryl acetate, square wave voltammetry, cosmeticsAbstract
The aim of this study was describe electrochemical properties of a carbon paste electrode (CPE) bulk modified with 30% (w/w) surfactant sodium dodecyl sulphate (CPE/SDS) and demonstrates its application in the determination of α‑tocopheryl acetate (α‑TAc), known as vitamin E acetate, in selected cosmetic products, especially body creams. In addition to anionic SDS, cationic hexadecylpyridinium chloride monohydrate (CPC) was also tested as possible modifier. It was found that selection of surfactant type and its content significantly affect an electrical conductivity and mechanical stability of these heterogeneous electroanalytical sensors in pure organic solvents. Under this study, it was found that CPC is a totally inappropriate mediator due to very high backgroundcurrent. Together with other lipophilic vitamins characterized by antioxidant activity (dominantly retionoids), this completely synthetic substance is widely used as significant cosmetic additive due its preservative properties. Monitoring of its content in cosmetic products is usually performed by high‑performance liquid chromatography (HPLC) with UV detection. This standard analytical protocol is always burdened with the complex and time‑consuming preparation of the sample before analysis. For that reason, robust and simple electroanalytical method based on anodic oxidation of the α‑TAc at CPE/SDS by square wave voltammetry (SWV) performed in pure organic electrolyte (99.8% acetonitrile containing 0.1 mol·L‑1 LiClO4) was developed. Moreover, simple dissolution of sample in supporting electrolyte using ultrasonic bath and subsequent filtering through a stacked filter included all the necessary procedures for sample preparation. The linear range from 0.1 to 1.2 mmol·L‑1and limit of detection 37 µmol·L‑1 were found at pulse amplitude 10 mV and frequency 10 Hz as optimum. In analysis of selected cosmetics, the developed electroanalytical method was not validated using comparison with standard HPLC. At least, the recovery was verified by analysis of model sample and value 95.8% was calculated.
Downloads
Metrics
References
Adams, R. N. 1958. Carbon paste electrodes. Analytical Chemistry, vol. 30, no. 9, p. 1576-1576. https://doi.org/10.1021/ac60141a600 DOI: https://doi.org/10.1021/ac60141a600
Almeida, M. M., Alves, J. M, Patto, D. C. S., Lima, C. R. R. C., Quenca-Guillen, J. S., Santoro, M. I. R. M., Kedor.Hackmann, E. R. M. 2009. Determination of tocopheryl acetate and ascorbyl tetraisopalmitate in cosmetic formulations by HPLC. Journal of Cosmetic Science, vol. 31, no. 6, p. 445-450. https://doi.org/10.1111/j.1468-2494.2009.00514.x DOI: https://doi.org/10.1111/j.1468-2494.2009.00514.x
Atuma, S. S., Lindquist, J., Lundström, K. 1974. The electrochemical determination of vitamin. A part I. Voltammetric determination of vitamin A in pharmaceutical preparations. Analyst, vol. 99, no. 1183, p. 683-689. https://doi.org/10.1039/an9749900683 DOI: https://doi.org/10.1039/an9749900683
Balz, M. K., Schulte, E., Their, H. P. 1993. Simultaneous determination of α-tocopheryl acetate, tocopherols and tocotrienols by HPLC with fluorescence detection in foods. European Journal of Lipid Science
and Technology, vol. 95, no. 6, p. 215-220. https://doi.org/10.1002/lipi.19930950603 DOI: https://doi.org/10.1002/lipi.19930950603
Barbosa, J., Sanz-Nebot, V. 1992. pH measurements in acetonitrile-water mixtures by use of a glass electrode. Journal of Pharmaceutical & Biomedical Analysis, vol. 10, no. 10-12, p. 1047-1051.https://doi.org/10.1016/0731-7085(91)80117-R DOI: https://doi.org/10.1016/0731-7085(91)80117-R
Da Silva, F. L. O., Da Silva Tinoco, L. M., Ferreira, L. A. M., Malagutti, A. R., Carneiro, G. 2015. Determination of all-trans retinoic acid loaded in solid liquid nanoparticles by differential pulse voltammetry at glassy carbon electrode. Electrochimica Acta, vol. 182, p. 929-934. https://doi.org/10.1016/j.electacta.2015.10.018 DOI: https://doi.org/10.1016/j.electacta.2015.10.018
Digua, K., Kauffmann, J. M., Delplancke, J. L. 1994. Surfactant modified carbon paste electrode: Part 1: Electrochemical and microscopic characterization. Electroanalysis, vol. 6, no. 5-6, p. 451-458. https://doi.org/10.1002/elan.1140060515 DOI: https://doi.org/10.1002/elan.1140060515
Digua, K., Kauffmann, J. M., Khodari, M. 1994. Surfactant modified carbon paste electrode: Part 2: Analytical performances. Electroanalysis, vol. 6, no. 5-6, p. 459-462. https://doi.org/10.1002/elan.1140060516 DOI: https://doi.org/10.1002/elan.1140060516
Gorton, L. 1995. Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis, vol. 7, no. 1, p. 23-45. https://doi.org/10.1002/elan.1140070104 DOI: https://doi.org/10.1002/elan.1140070104
Hassan, E. M., Khamis, E. F., El-Kimary, E. I.,Barary, M. A. 2008. Development of a differential pulse voltammetric method for the determinativ of Silymarin/Vitamin E, p. acetate mixture in pharmaceuticals. Talanta, vol. 74, p. 773-778. https://doi.org/10.1016/j.talanta.2007.07.006 DOI: https://doi.org/10.1016/j.talanta.2007.07.006
Hewavitharana, A. K., Lanari, M. C., Becu, C. 2004. Simultaneous determination of vitamin E homologs in chicken meat by liquid chromatography with fluorescence detection. Journal of Chromatography A, vol. 1025, no. 2, p. 313-317. https://doi.org/10.1016/j.chroma.2003.10.052 DOI: https://doi.org/10.1016/j.chroma.2003.10.052
Iwase, H. 2000. Determination of tocopherol acetate in emulsified nutritional supplements by solid-phase extraction and high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, vol. 881, no. 1-2, p. 243-249. https://doi.org/10.1016/S0021-9673(00)00058-3 DOI: https://doi.org/10.1016/S0021-9673(00)00058-3
Labuda, J., Meister, A., Gläser, P., Werner, G. 1998. Metal oxide-modified carbon paste electrodes and microelectrodes for the detection of amino acids and their application to capillary electrophoresis. Fresenius' Journal of Analytical Chemistry, vol. 360, no. 6, p. 654-658. https://doi.org/10.1007/s002160050775 DOI: https://doi.org/10.1007/s002160050775
MacDougall, D., Crummett, W. B. 1980. Guidelines for data acquisition and data quality evaluation in environmental chemistry. Analytical Chemistry, vol. 52, no. 14, p. 2242‑2249. https://doi.org/10.1021/ac50064a004 DOI: https://doi.org/10.1021/ac50064a004
Michalkiewicz, S., Pryciak, M., Malyszko, J., Oszczudlowski, J. 2004. Voltammetric determination of α-tocopheryl acetate in pharmaceutical dosage form. Electroanalysis, vol. 16, no. 11, p. 961-965. https://doi.org/10.1002/elan.200302893 DOI: https://doi.org/10.1002/elan.200302893
Mikheeva, E. V., Anisimova, L. S. 2007. Voltammetric determination of vitamin E (α‑tocopherol acetate) in multicomponent vitaminized mixtures. Journal of Analytical Chemistry, vol. 62, no. 4, p. 373-376. https://doi.org/10.1134/S1061934807040144 DOI: https://doi.org/10.1134/S1061934807040144
Mikysek, T., Švancara, I., Kalcher, K., Bartoš, M., Vytřas, K., Ludvík, J. 2009. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Analytical Chemistry, vol. 81, no. 15, p. 6327-6333. https://doi.org/10.1021/ac9004937 DOI: https://doi.org/10.1021/ac9004937
Moravkova, T., Filip, P. 2013. The influence of emulsifier on rheological and sensory properties of cosmetic lotions. Advances in Materials Science and Engineering, vol. 2013, no. 1, p. 1-7. https://doi.org/10.1155/2013/168503 DOI: https://doi.org/10.1155/2013/168503
Nada, A., Krishnaiah, Y. S., Zaghloul, A. A., Khattab, I. 2010. Analysis of vitamin E in commercial cosmetic preparations by HPLC. Journal of Cosmetic Science, vol. 61, no. 5, p. 353-365. PMid:20939975
Punbusayakul, N. 2012. Carbon nanotubes architectures in electroanalysis. Procedia Engineering, vol. 32, no. 1, p. 683-689. https://doi.org/10.1016/j.proeng.2012.01.1327 DOI: https://doi.org/10.1016/j.proeng.2012.01.1327
Ramos- E Silva, M., Hexsel, D. M., Rutowitsch, M. S., Zechmeister, M. 2001. Hydroxy acids and retionids in cosmetics. Clinics in Dermatology, vol. 19, no. 4, p. 460-466. https://doi.org/10.1016/S0738-081X(01)00189-4 DOI: https://doi.org/10.1016/S0738-081X(01)00189-4
Rodas Mendoza, B., Morera Pons, S., Castellote Bargalló, A. I., López-Sabater, M. C. 2003. Rapid determination by reverse-phase high-performance liquid chromatography of vitamins A and E in infant formulas. Journal of Chromatography A, vol. 1018, no. 2, p. 197-202. https://doi.org/10.1016/j.chroma.2003.08.018, DOI: https://doi.org/10.1016/j.chroma.2003.08.018
Sunarič, S., Lalič, J., Spasič, A. 2017. Simultaneous determination of alpha-tocopherol and alpha-tocopheryl acetate in dairy pdoructs, plant milks and health supplements by using SPE and HPLC method. Food Analytical Methods, vol. 10, no. 12, p. 3880-3901. https://doi.org/10.1007/s12161-017-0943-x DOI: https://doi.org/10.1007/s12161-017-0943-x
Sýs, M., Metelka, R., Stočes, M., Vytřas, K. 2016. Electrochemical properties of α-tocopherol in aqueous electrolytes after its previous extraction into the glassy carbon paste from aqueous-acetonic mixture. Monatschefte für Chemie, vol. 147, no. 1, p. 31-38. https://doi.org/10.1007/s00706-015-1620-7 DOI: https://doi.org/10.1007/s00706-015-1620-7
Sýs, M., Švecová, B., Švancara, I., Metelka, R. 2017. Determination of vitamin E in margarines and edible oils using square wave anodic stripping voltammetry with glassy carbon paste electrode. Food Chemistry, vol. 229, p. 621-627. https://doi.org/10.1016/j.foodchem.2017.02.068 DOI: https://doi.org/10.1016/j.foodchem.2017.02.068
Sýs, M., Žabčíková, S., Červenka, L., Vytřas, K. 2016. Adsorptive stripping voltammetry in lipophilic vitamins determination. Potravinarstvo, vol. 10, no. 1, p. 260-264. https://doi.org/10.5219/587 DOI: https://doi.org/10.5219/587
Tan, Y. S., Urbančok, D., Webster, R. D. 2014. Contrasting voltammetric behaviour of different forms of vitamin A in aprotic organic solvents. The Journal of Physical Chemistry B, vol. 118, no. 29, p. 8591-8600. https://doi.org/10.1021/jp505456q DOI: https://doi.org/10.1021/jp505456q
Thiele J. J., Hsieh, S. N., Ekanayake-Mudiyanselage, S. 2005. Vitamin E: critical review of its current use in cosmetic and clinical dermatology. Dermatologic Surgery, vol 31, no. 1, p. 805-813. https://doi.org/10.1111/j.1524-4725.2005.31724 DOI: https://doi.org/10.1111/j.1524-4725.2005.31724
Wang, L. H., Wang, J. F. 2001. Determination of retinoids in human serum, tocopherol and retinyl acetate in pharmaceuticals by RP-LC with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 5-6, p. 785-793. https://doi.org/10.1016/S0731-7085(01)00381-8 DOI: https://doi.org/10.1016/S0731-7085(01)00381-8
Wilson, G. J., Lin, Ch. Y., Webster, R. D. 2006. Significant differences in the lectrochemical behavior of the α-, β-, γ-, and δ-tocopherols (vitamin E). Journal of Physical Chemistry B, vol. 110, no. 23, p. 11540-11548. https://doi.org/10.1021/jp0604802 DOI: https://doi.org/10.1021/jp0604802
Yang, Y., Lu, D., Yin, S., Yang, D., Chen, Y., Li, Y., Sun, Ch. 2018. A convenient ultrasound-assisted saponification for the simultaneous determination of vitamin E isomers in vegetable oil by HPLC with fluorescence detection. Journal of Separation Science, (in editing). http://doi.org/10.1002/jssc.201701393 DOI: https://doi.org/10.1002/jssc.201701393
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.