Extractive stripping voltammetry at a glassy carbon paste electrode for analysis of cow's milk and cream

Authors

  • Granit Jashari University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic https://orcid.org/0000-0002-3760-4073
  • Michaela Frühbauerová University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic https://orcid.org/0000-0003-1286-7341
  • Milan Sýs University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic https://orcid.org/0000-0002-3982-3659
  • Libor Červenka University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic https://orcid.org/0000-0003-2316-8765

DOI:

https://doi.org/10.5219/1299

Keywords:

carbon paste electrode, cow's milk, extraction, milk fortification, nutrition control, voltammetry

Abstract

In this paper, a procedure based on extractive accumulation of milk fat globules (MFGs) into a pasting liquid (lipophilic binder) of glassy carbon paste electrode (GCPE) with subsequent electrochemical detection by square-wave voltammetry (SWV) in 0.1 mol L-1 Britton-Robinson buffer of pH 4.0 has been tested to find out whether it can be utilized as a simple screening analytical method for cow's milk and cream nutrition control. Since there is assumption that the necessary alkaline hydrolysis of cow's milk and subsequent extraction of lipophilic vitamins into an organic solvent could be avoided, several GCPEs differing in type (atactic polypropylene, paraffin oil, paraffin wax, silicone oil, and vaseline) and content (5, 10, 15, 20, and 25%; w/w) of pasting liquid used were tested as part of complex optimization. The obtained results show that MFGs contain predominantly vitamin A (carotenoids and retinoids), especially all-trans-retinol, which could serve as significant marker of the fat content. However, their individual forms were not possible to distinguish due to the considerable anodic peak broadening (overlapping).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Blanco, D., Fernández, M. P., Gutiérrez M. D. 2000. Simultaneous determination of fat-soluble vitamins and provitamins in dairy products by liquid chromatography with a narrow-bore column, Analyst, vol. 125, no. 3, p. 427-431. https://doi.org/10.1039/A909027D DOI: https://doi.org/10.1039/a909027d

Gaucheron, F. 2011. Milk and dairy products: a unique micronutrient combination. Journal of the American College of Nutrition, vol. 30, no. S5, p. 400S-409S. https://doi.org/10.1080/07315724.2011.10719983 DOI: https://doi.org/10.1080/07315724.2011.10719983

Gomis, D. B., Fernández, M. P., Gutiérrez M. D. 2000. Simultaneous determination of fat-soluble vitamins and provitamins in milk by microcolumn liquid chromatography, Journal of Chromatography A, vol. 891, no. 1, p. 109-114. https://doi.org/10.1016/S0021-9673(00)00623-3 DOI: https://doi.org/10.1016/S0021-9673(00)00623-3

Haug, A., Høstmark, A. T., Harstad, O. M. 2007. Bovine milk in human nutrition – a review, Lipids in Health and Disease, vol. 6, no. 25, p. 1-16. https://doi.org/10.1186/1476-511X-6-25 DOI: https://doi.org/10.1186/1476-511X-6-25

Heid, H. W., Keenan, T. W. 2005. Intracellular origin and secretion of milk fat globules, European Journal of Cell Biology, vol. 84, no. 2-3, p. 245-258. https://doi.org/10.1016/j.ejcb.2004.12.002 DOI: https://doi.org/10.1016/j.ejcb.2004.12.002

Hodulová, L., Vorlová, L., Kostrhounová, R., Klimešová-Vyletělová, M., Kuchtík, J. 2015. Interspecies and seasonal differences of retinol in dairy ruminant´s milk. Potravinarstvo, vol. 9, no. 1, p. 201-205. https://doi.org/https://doi.org/10.5219/436 DOI: https://doi.org/10.5219/436

Hulshof, P. J. M., van Roekel-Jansen, T., van de Bovenkamp P., West, C. E. 2006. Variation in retinol and carotenoid content of milk and milk products in The Netherlands, Journal of Food Composition and Analysis, vol. 19, no. 1, p. 67-75. https://doi.org/10.1016/j.jfca.2005.04.005 DOI: https://doi.org/10.1016/j.jfca.2005.04.005

Indyk, H. E., Woollard, D. C. 1997. Vitamin K in milk and infant formulas: determination and distribution of phylloquinone and menaquinone-4, Analyst, vol. 122, no. 5, p. 465-469. https://doi.org/10.101610.1039/A608221A DOI: https://doi.org/10.1039/a608221a

Jensen, R. G., Ferris, a. M., Lammi-Keefe, C. J. 1991. The composition of milk fat, Journal of Dairy Science, vol. 74, no. 9, p. 3228-3243. https://doi.org/10.3168/jds.S0022-0302(91)78509-3 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78509-3

Jensen, S. K. 1994. Retinol determination in milk by HPLC and fluorescence detection, Journal of Dairy Research, vol. 61, no. 2, p. 233-240. https://doi.org/10.1017/S0022029900028247 DOI: https://doi.org/10.1017/S0022029900028247

Logan, A., Auldist, M., Greenwood, J., Day, L. 2014. Natural variation of bovine milk fat globule size within a herd, Journal of Dairy Science, vol. 97, no. 7, p. 4072-4082. https://doi.org/10.3168/jds.2014-8010 DOI: https://doi.org/10.3168/jds.2014-8010

Lovander, M. D., Lyon, J. D., Parr, D., Wang, J., Parke, B., Leddy, J. 2018 Critical Review—Electrochemical properties of 13 vitamins: a critical review and assessment, Journal of the Electrochemical Society, vol. 165, no. 2, p. G18-G49. https://doi.org/10.1149/2.1471714jes DOI: https://doi.org/10.1149/2.1471714jes

Michalski, M. C., Camier, B., Briard, V., Leconte, N., Gassi, J. Y., Goudédranche, H., Michel, F., Fauquant, J. 2004. The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese, Dairy Science and Technology, vol. 84, no. 4, p. 343-358. https://doi.org/10.1051/lait:2004012 DOI: https://doi.org/10.1051/lait:2004012

Michlová, T., Hejtmánková, A., Pivec, V., Dragounová, H., Hejtmánková. K., Elich, O. 2012. Vliv pasterace a zamrazení na obsah lipofilních vitaminů v mléce, Mlékařské listy, vol. 135, no. 135, p. 5-9.

Musara, C., Nyagura, M. 2017. Skimmed milk as a determinant of vitamin A deficiency, South African Journal of Clinical Nutrition, vol. 30, no. 1, 24-26. https://doi.org/10.1080/16070658.2017.1237454 DOI: https://doi.org/10.1080/16070658.2017.1237454

Robin, O., Paquin, P. 1991. Evaluation of the particle size of fat globules in a milk model emulsion by photon correlation spectroscopy, Journal of Dairy Science, vol. 74, no. 8, p. 2440-2447. https://doi.org/10.3168/jds.S0022-0302(91)78419-1 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78419-1

Sýs, M., Farag, A. S., Švancara, I. 2019. Extractive stripping voltammetry at carbon paste electrodes for determination of biologically active organic compounds, Monatshefte für Chemie, vol. 150, no. 3, p. 373-386. https://doi.org/10.1007/s00706-018-2346-0 DOI: https://doi.org/10.1007/s00706-018-2346-0

Sýs, M., Žabčíková, S., Červenka, L., Vytřas, K. 2017. Comparison of adsorptive with extractive stripping voltammetry in electrochemical determination of retinol, Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 96-105. https://dx.doi.org/10.5219/713 DOI: https://doi.org/10.5219/713

Švancara, I., Schachl, K. 1999. Testing of unmodified carbon paste electrodes, Chemické Listy, vol. 93, no. 8, p. 490-499.

Trenerry, V. C., Plozza, T., Caridi, D., Murphy, S. 2011. The determination of vitamin D3 in bovine milk by liquid chromatography mass spectrometry, Food Chemistry, vol. 125, no. 4, p. 1314-1319. https://doi.org/10.1016/j.foodchem.2010.09.097 DOI: https://doi.org/10.1016/j.foodchem.2010.09.097

Trinidad, T. P., Mallillin, A. C., Sagum, R. S., de Leon, M. P., Borlagdan, M. S., Baquiran, A. F. P. 2015. Fortified milk consumption among 6-year old children: changes in biochemical markers of trace minerals and vitamins, Trace Elements and Electrolytes, vol. 32, no. 3, p. 1-7. https://doi.org/10.5414/TEX01376 DOI: https://doi.org/10.5414/TEX01376

Van Vliet, T., Walstra, P. 1980. Relationship between viscosity and fat content of milk and cream. Journal of Texture Studies, vol. 11, no. 1, p. 65-68. https://doi.org/10.1111/j.1745-4603.1980.tb00308.x DOI: https://doi.org/10.1111/j.1745-4603.1980.tb00308.x

Zhang, Y., Qibule, H., Jin, Y., Wang, J., Ma, W. 2015. Simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions by online two-dimensional liquid chromatography, Chinese journal of chromatography, vol. 33, no. 3, p. 291-297. https://doi.org/10.3724/SP.J.1123.2014.11009 DOI: https://doi.org/10.3724/SP.J.1123.2014.11009

Žabčíková, S., Mikysek, T., Červenka, L., Sýs, M. 2018. Electrochemical study and determination of all-trans-retinol at carbon paste electrode modified by a surfactant, Food Technology and Biotechnology, vol. 56, no. 3, p. 337-343. https://doi.org/10.17113/ftb.56.03.18.5618 DOI: https://doi.org/10.17113/ftb.56.03.18.5618

Published

2020-04-28

How to Cite

Jashari, G., Frühbauerová, M., Sýs, M., & Červenka, L. (2020). Extractive stripping voltammetry at a glassy carbon paste electrode for analysis of cow’s milk and cream. Potravinarstvo Slovak Journal of Food Sciences, 14, 202–207. https://doi.org/10.5219/1299

Most read articles by the same author(s)