Microbial biofilms produced by pseudomonas fluorescens on solid surfaces

Authors

  • Jozef Čapla Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Peter Zajác Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Jozef Golian Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Pavol Bajzí­k Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Lucia Zeleňáková Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Vladimí­r Vietoris Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Storing and Processing Plant Products, Tr. A. Hlinku 2, 949 76 Nitra
  • Dagmar Kozelová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/18

Keywords:

biofilm, microbial attachment, Pseudomonas fluorescens

Abstract

A biofilm is a complex aggregation of microorganisms growing on a solid substrate. Biofilms are characterized by structural heterogeneity, genetic diversity, complex community interactions, and an extracellular matrix of polymeric substances. The experimental part was focused on the adhesion of bacterial cells under static conditions and testing the effectiveness of disinfectants on created biofilm. In laboratory conditions we prepared and formed the bacterial biofilms Pseudomonas fluorescens in the four test surfaces of stainless steel, glass and plastic materials - PE (polyethylene) and EPDM (ethylene propylene diene monomer). Over the next 72 hours and 72 hours were observed numbers of adhesion bacterial cells of P. fluorescens on solid surfaces of tested materials. The highest values adhesion cells reached P. fluorescens cells after 72 hours of cultivation on plastic surfaces, where  was increased in adhesion bacterial cells for EPDM in the values of 105 CFU/cm2 and for PE up to 106 CFU/cm2. The subsequent repeated 72-hour cultivation P. fluorescens was an increase (growth) in the number of adhesion bacterial cells to all tested surfaces.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

CARPENTIER, B., CHASSAING, D. 2004. Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. In International Journal of Food Microbiology, vol. 97, 2004, p. 111-122.

https://doi.org/10.1016/j.ijfoodmicro.2004.03.031 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.031

PMid:15541798

DOYLE, R. J. 2000. Contribution of the hydrophobic effect to microbial adhesion, In Microbes and Infection, vol. 2, 2000, p. 391-400.

https://doi.org/10.1016/S1286-4579(00)00328-2 DOI: https://doi.org/10.1016/S1286-4579(00)00328-2

PMid: 10817641

DRAKE, C., BARENFANGER J., LAWHORN J., VERHULST, S. 2005. Comparison of Easy-Flow Copan liquid Stuart's and Starplex swab transport systems for recovery of fastidious aerobic bacteria. In J. Clin. Microbiol., vol. 43, 2005, p. 1301-1303.

https://doi.org/10.1128/JCM.43.3.1301-1303.2005 DOI: https://doi.org/10.1128/JCM.43.3.1301-1303.2005

PMid:15750099

GENIGEORGIS, C., SOFOS, J. 1995. Inactivating human pathogens by processing and packaging. In Proc. Int. Conf. Veterinary Aspects of Meat Production, Processing and Inspection 11-15 October 1993, Ecceamst, Utrecht, In Press 1995, p. 78-79.

HARRISON, J. J., TURNER, R. J., JOO, D. A., STAN, M. A., CHAN, C. S., ALLEN, N. D., VRIONIS, H. A., OLSON, M. E., CERI, H. 2008. Copper and Quaternary ammonium cations exert synergistic bactericidal and anti-biofilm activity against Pseudomonas aeruginosa. In Antimicrobial Agents and Chemother., vol. 52, 2008, p. 2870-2881.

https://doi.org/10.1128/AAC.00203-08 DOI: https://doi.org/10.1128/AAC.00203-08

PMid:18519726

Lee WONG, A. C. 1998. Biofilms in food processing environments. In Journal of Dairy Science, vol. 81, 1998, p. 10.

https://doi.org/10.3168/jds.S0022-0302(98)75834-5 DOI: https://doi.org/10.3168/jds.S0022-0302(98)75834-5

LIU, Y., STRAUSS, J., CAMESANO, T. A. 2007. Thermodynamic investigation of Staphylococcus epidermidis interactions with protein-coated substrata, In Langmuir, vol. 23, 2007, p. 7134-7142.

https://doi.org/10.1021/la700575u DOI: https://doi.org/10.1021/la700575u

PMid:17521208

MARSHALL, K. C. 1992. Biofilms: an overview of bacterial adhesion, activity and control at surfaces. In ASM News, vol. 58, 1992, p. 202-207.

MATTILA-SANDHOLM, T., WIRTANEN, G. 1992. Biofilm formation in the industry: A Review. In: Food Reviews International, vol. 8, 1992, p. 573-603.

https://doi.org/10.1080/87559129209540953 DOI: https://doi.org/10.1080/87559129209540953

MOSTELLER, T. M., BISHOP, J. R. 1993. Sanitizer efficacy against attached bacteria in a milk biofilm. In J. Food Prot., vol. 56, 1993, p. 34-41. DOI: https://doi.org/10.4315/0362-028X-56.1.34

MOTT, I. E. C., STICKLER, D. J., COAKLEY, W. T., BOTT, T. R. 1998. The removal of bacterial biofilm from water-filled tubes using axially propagated ultrasound. In J. Appl. Microbiol., vol. 84, 1998, p. 509-514.

https://doi.org/10.1046/j.1365-2672.1998.00373.x DOI: https://doi.org/10.1046/j.1365-2672.1998.00373.x

NIVENS, D. E., PALMER, R. Jr., WHITE, D. C. 1995. Continuous nondestructive monitoring of microbial biofilms: A review of analytical techniques. In Journal of Industrial Microbiology, vol. 15, 1995, p. 263-276.

https://doi.org/10.1007/BF01569979 DOI: https://doi.org/10.1007/BF01569979

ÖSTERBLAD, M., JÄRVINEN, H., LÖNNQVIST, K., HUIKKO, S., LAIPPALA, P., VILJANTO J., ARVILOMMI, H., HUOVINEN, P. 2003. Evaluation of a new cellulose spongetipped swab for microbiological sampling: a laboratory and clinical investigation. In J. Clin. Microbiol., vol. 41, 2003, p. 1894-1900.

https://doi.org/10.1128/JCM.41.5.1894-1900.2003 DOI: https://doi.org/10.1128/JCM.41.5.1894-1900.2003

PMid:12734223

PASMORE, M., TODD, P., PFIEFER, B., RHODES, M., BOWMAN, C. N. 2002. Effect of polymeric surface properties on the reversibility of attachment of Pseudomonas aeruginosa in the early stages of biofilm development, In Biofouling, vol. 18, 2002, p. 65-71.

https://doi.org/10.1080/08927010290017743 DOI: https://doi.org/10.1080/08927010290017743

TSUNEDA, S., AIKAWA, H., HAYASHI, H., YUASA, A., HIRATA, A. 2003. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. In Microbiol. Lett., 223, vol. 2, 2003, p. 287-292.

https://doi.org/10.1016/S0378-1097(03)00399-9 DOI: https://doi.org/10.1016/S0378-1097(03)00399-9

PMid:12829300

VADILLO-RODRIGUEZ, V., BUSSCHER, H. J., NORDE, W., DE VRIES, J., VAN DER MEI, H. C. 2004. Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. In J. Colloid Interface Sc., vol. 278, 2004, p. 251-254.

https://doi.org/10.1016/j.jcis.2004.05.045 DOI: https://doi.org/10.1016/j.jcis.2004.05.045

PMid:15313661

Downloads

Published

2011-03-06

How to Cite

Čapla, J. ., Zajác, P. ., Golian, J. ., Bajzí­k, P. ., Zeleňáková, L. ., Vietoris, V. ., & Kozelová, D. . (2011). Microbial biofilms produced by pseudomonas fluorescens on solid surfaces. Potravinarstvo Slovak Journal of Food Sciences, 5(2), 13–16. https://doi.org/10.5219/18

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 10 > >>