New methodologies for biofilms control in food industry

Authors

  • Jozef Čapla Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, EU
  • Peter Zajác Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, EU
  • Vladimí­r Vietoris Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, EU
  • Pavol Bajzí­k Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, EU

DOI:

https://doi.org/10.5219/17

Keywords:

biofilm, cleaning and disinfection, enzyme, bioregulation

Abstract

The complete removal of biofilms on food  equipment surfaces  is essential to ensure food safety and quality. However, cells in biofilms exhibit greater resistance against the action of sanitizers and other antimicrobial agents compared to their free living counterparts, making them much more difficult to remove. They can be a significant source of post - processing contamination and could potentially harbor pathogens in food processing platns. The biotechnology sector is just beginning to tackle the problem of biofilms by developing antimicrobial agents with novel mechanisms of action. Some studies seek to prevent biofilm formation, others aim to develop antimicrobial agents to treat existing biofilms, and still others are trying to disrupt the polymeric ties that bind the biofilms together.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

AL-TAHHAN, R. A., SANDRIN, T. R., BODOUR, A. A., MAIER, R. M. 2000. Rhamnolipidinduced removal of lipopolysaccharides from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. In Applied and Environmental Microbiology, vol. 66, p. 3262-3268. DOI: https://doi.org/10.1128/AEM.66.8.3262-3268.2000

PMid:10919779

PMCid:92143

BEUTIN, L., WANG, Q., NAUMANN, D., HAN, W., KRAUSE, G., LEOMIL, L., WANG, L., FENG, L. 2007. Relationship between O‐antigen subtypes, bacterial surface structures and O‐antigen gene clusters in Escherichia coli O123 strains carrying genes for Shiga toxins and intimin. In J. Med. Microbiol., vol. 56, p. 177‐184.

https://doi.org/10.1099/jmm.0.46775-0 DOI: https://doi.org/10.1099/jmm.0.46775-0

PMid:17244797

BOOR, K., FROMM, H. 2006. Managing microbial spoilage in the dairy industry. InFood spoilage microorganisms. C. de W. Blackburn, ed. CRC Press LLC, Florida. pp. 171‐193. DOI: https://doi.org/10.1533/9781845691417.2.171

CARPENTIER, B., CERF, O. 1993. Biofilms and their consequences, with particular reference to hygiene in food industry. In Journal of Applied Microbiology, vol. 75, p. 499-511.

https://doi.org/10.1111/j.1365-2672.1993.tb01587.x DOI: https://doi.org/10.1111/j.1365-2672.1993.tb01587.x

CLOETE, T. E. 2003. Resistance mechanisms of bacteria to antimicrobial compounds. In International Biodeterioration & Biodegradation, vol. 51, p. 277-282.

https://doi.org/10.1016/S0964-8305(03)00042-8 DOI: https://doi.org/10.1016/S0964-8305(03)00042-8

PMCid:373060

CUI X. 2004. Regulation of biosurfactant production by quorum sensing in Pseudomonasfluorescens 5064, the cause of broccoli head rot disease. PhD Thesis. University of Edinburgh.

DANIELS, R., VANDERLEYDEN, J., MICHIELS, J. 2004. Quorum sensing and swarming migration in bacteria. In FEMS Microbiology Reviews, vol. 28, p. 261-289.

https://doi.org/10.1016/j.femsre.2003.09.004 DOI: https://doi.org/10.1016/j.femsre.2003.09.004

PMid:15449604

Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. Official Journal of the European Communities.

DONLAN, R. M., COSTERTON, J. W. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. In Clinical Microbiology Reviews, vol. 15, p. 167-193.

https://doi.org/10.1128/CMR.15.2.167-193.2002 DOI: https://doi.org/10.1128/CMR.15.2.167-193.2002

PMid:11932229

PMCid:118068

GIBSON H. J., TAYLOR, H., HALL, K. E., HOLAH, J. T. 1999. Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. In Journal of Applied Microbiology, vol. 87, p. 41-48.

https://doi.org/10.1046/j.1365-2672.1999.00790.x DOI: https://doi.org/10.1046/j.1365-2672.1999.00790.x

PMid:10432586

GILBERT, P., ALLISON, D. G. 1999. Dynamics in microbial communities: A Lamarkian perspective. In: Biofilms – The good, the bad and the ugly. WIMPENNY J. GILBERT P. WALKER J. BRADING M. AND BAYSTON R. (eds). pp. 263-268.

GILBERT, P., MCBAIN, A. J., RICKARD, A. H. 2003. Formation of microbial biofilm in hygienic situations: a problem of control. In International Biodeterioration & Biodegradation, vol. 51, p. 245-248.

https://doi.org/10.1016/S0964-8305(03)00043-X DOI: https://doi.org/10.1016/S0964-8305(03)00043-X

PMCid:373060

HOLAH, J. T. 1992. Industrial monitoring: hygiene in food processing. In Biofilms – Science and Technology. MELO L. F. BOTT T. R. FLETCHER M. AND CAPDEVILLE B. (eds). pp. 19 - 23. DOI: https://doi.org/10.1007/978-94-011-1824-8_57

HUGHES, K. A., SUTHERLAND, I. W., JONES M. V. 1998. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. InMicrobiology, vol. 144, p. 3039-3047.

https://doi.org/10.1099/00221287-144-11-3039 DOI: https://doi.org/10.1099/00221287-144-11-3039

PMid:9846739

CHMIELEWSKI, R. A. N., FRANK, J. F. 2003. Biofilm formation and control in food processing facilities. InComprehensive Reviews in Food Science and Food Safety, vol. 2, 2003, p. 22-32.

https://doi.org/10.1111/j.1541-4337.2003.tb00012.x DOI: https://doi.org/10.1111/j.1541-4337.2003.tb00012.x

CHRISTENSEN, B. B., HAAGENSEN, J. A. J., HEYDORN, A., MOLIN, S. 2002. Metabolic commensalism and competition in a two-species microbial consortium. InApplied and Environmental Microbiology, vol. 68, 2002, p. 2495-2502.

https://doi.org/10.1128/AEM.68.5.2495-2502.2002 DOI: https://doi.org/10.1128/AEM.68.5.2495-2502.2002

PMid:11976126

PMCid:127540

JAQUELIN, L. F., LE MAGREX, E., BRISSET, L., CARQUIN, J., BERTHET, A., CHOISY, C. 1994. Synergie effect of enzymes or surfactants in association with a phenolic disinfectant on a bacterial biofilm. In Pathologie et Biologie, vol. 42, 1994, p. 425-431.

JAY, J. M., LOESSNER, M. J., GOLDEN, D. A. 2005. Modern Food Microbiology. 7th ed. Springer‐Science + Business Media, Inc., New York. 790 p.

JOHANSEN, C., FALHOLT, P., GRAM, L. 1997. Enzymatic removal and disinfection of bacterial biofilms. In Applied and Environmental Microbiology, vol. 9, 1997, p. 3724-3728. DOI: https://doi.org/10.1128/aem.63.9.3724-3728.1997

LERICHE, V., CARPENTIER, B. 2000. Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. In Journal of Applied Microbiology, vol. 88, 2000, p. 594-605.

https://doi.org/10.1046/j.1365-2672.2000.01000.x DOI: https://doi.org/10.1046/j.1365-2672.2000.01000.x

PMid:10792517

LIAO, C. H. 2006. Pseudomonas and related genera. In Food spoilage microorganisms. C. de W. Blackburn, ed. CRC Press LLC, Florida. pp. 507‐540. DOI: https://doi.org/10.1533/9781845691417.5.507

https://doi.org/10.1201/9781439824573.pt5 DOI: https://doi.org/10.1201/9781439824573.pt5

LUO, H. 2005. Identification of microorganisms in food ecosystems and characterization of physical and molecular events involved in biofilm development. Ph.D. Dissertation. Ohio State University, Columbus, OH. 197 p.

LUYPAERT, J., HEUERDING, S., VANDER HEYDEN, Y., MASSART, D. L. 2004. The effect of preprocessing methods in reducing interfering variability from near‐infrared measurements of creams. InJ. Pharm. Biomed. Anal., vol. 36, 2004, no. 3, p. 495‐503.

https://doi.org/10.1016/j.jpba.2004.06.023 DOI: https://doi.org/10.1016/j.jpba.2004.06.023

PMid:15522523

MANUZON, M. Y., WANG, H. H. 2007. Mixed culture biofilms. In Biofilms in the Food Environment. BLASCHEK, H.P., WANG, H. H., AGLE, M. E. eds. Blackwell Publishing Co., Ames, Iowa. pp. 105‐125. DOI: https://doi.org/10.1002/9780470277782.ch5

MAUKONEN, J., MATTILA-SANDHOLN, T., WIRTANEN, G. 2000. Metabolic indicators for assessing bacterial viability sampling using cells in suspension and swabbed biofilm. In Libensmittel-Wissenschaft Technologie, vol. 33, 2000, p. 225-233.

https://doi.org/10.1006/fstl.2000.0650 DOI: https://doi.org/10.1006/fstl.2000.0650

MCBAIN, A. J., ALLISON, D. G., GILBERT, P. 2000. Population dynamics in microbial biofilms. In Community Structures and Co-operation in Biofilms. ALLISON, D. G., GILBERT, P., LAPPIN-SCOTT, H. M., WILSON, M. (eds). pp. 309-327. DOI: https://doi.org/10.1017/CBO9780511754814.016

MEYER, B. 2003. Approaches to prevention, removal and killing of biofilms. In International Biodeterioration & Biodegradation, vol. 51, 2003, p. 249-253.

https://doi.org/10.1016/S0964-8305(03)00047-7 DOI: https://doi.org/10.1016/S0964-8305(03)00047-7

PMCid:373060

Mireles J. R., TOGUCHI, A., HARSHEY, R. M. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. In Journal of Bacteriology, vol. 183, 2001, p. 5848-5854.

https://doi.org/10.1128/JB.183.20.5848-5854.2001 DOI: https://doi.org/10.1128/JB.183.20.5848-5854.2001

PMid:11566982

PMCid:99661

MOSTELLER, T. M., BISHOP, J. R. 1993. Sanitizer efficacy against attached bacteria in milk biofilm. In Journal of Food Protection, vol. 56, 1993, p. 34-41. DOI: https://doi.org/10.4315/0362-028X-56.1.34

OSTERREICHER-RAVID, D., RON, E. Z., ROSENBERG, E. 2000. Horizontal transfer of an exopolymer complex from one bacterial species to another. InEnvironmental Microbiology, vol. 2, 2000, p. 366-372.

https://doi.org/10.1046/j.1462-2920.2000.00110.x DOI: https://doi.org/10.1046/j.1462-2920.2000.00110.x

PMid:11234924

POPPELE, E. H., HOZALSKI, R. M. 2003. Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs. In Journal of Microbiological Methods, vol. 55, 2003, p. 607-615.

https://doi.org/10.1016/S0167-7012(03)00198-2 DOI: https://doi.org/10.1016/S0167-7012(03)00198-2

SCHACHTER, B. 2003. Slimy business – the biotechnology of biofilms. In Nature Biotechnology, vol. 21, 2003, p. 361-365.

https://doi.org/10.1038/nbt0403-361 DOI: https://doi.org/10.1038/nbt0403-361

PMid:12665817

SUTHERLAND, I. W., HUGHES, K. A., SKILLMAN, L. C., TAIT, K. 2004. The interaction of phage and biofilms. In FEMS Microbiology Letters, vol. 232, 2004, p. 1-6.

https://doi.org/10.1016/S0378-1097(04)00041-2 DOI: https://doi.org/10.1016/S0378-1097(04)00041-2

SVENSSON, B., ENEROTH, A., BRENDEHAUG, J., MOLIN, G., CHRISTIANSSON, A. 2000. Involvement of a pasteurizer in the contamination of milk by Bacilluscereus in a commercial dairy plant. In J. Dairy Res., vol. 67, 2000, no. 3, p. 455‐460.

https://doi.org/10.1017/S0022029900004313 DOI: https://doi.org/10.1017/S0022029900004313

PMid:11037242

TROLLER J. A. 1993. Sanitation in food processing. Academic Press Inc. DOI: https://doi.org/10.1016/B978-0-12-700655-0.50026-2

TSUNEDA, S., AIKAWA, H., HAYASHI, H., YUASA, A., HIRATA, A. 2003. Extracelullar polymeric substances responsible for bacterial adhesion onto solid surface. In FEMS Microbiol. Lett., vol. 223, 2003, no. 2, p. 287-292.

https://doi.org/10.1016/S0378-1097(03)00399-9 DOI: https://doi.org/10.1016/S0378-1097(03)00399-9

WANG, S. Y., LAURITZ, J., JASS, J., MILTON, D. L. 2003. Role for the major outermembrane protein from Vibrio anguillarum in bile resistance and biofilm formation. In Microbiology, Vol.149, 2003, p. 1061-1071.

https://doi.org/10.1099/mic.0.26032-0 DOI: https://doi.org/10.1099/mic.0.26032-0

PMid:12686648

WANG, H.H., MANUZON, M. Y., LEHMAN, M., WAN, K., LUO, H., WITTUM, T. E., YOUSEF A. E., BAKALETZ, L. O. 2006. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. In FEMS MicrbioL Lett., vol. 254, 2006, p. 226-231.

https://doi.org/10.1111/j.1574-6968.2005.00030.x DOI: https://doi.org/10.1111/j.1574-6968.2005.00030.x

PMid:16445749

WINGENDER, J., NEU, T. R., FLEMMING, H. C. 1999. What are bacterial extracellular polymeric substances?. InMicrobial extracellular polymeric substances – characterization, structure and function. WINGENDER, J., NEU, T. R., FLEMMING, H. C. (eds). pp. 1-19. DOI: https://doi.org/10.1007/978-3-642-60147-7_1

WIRTANEN, G. 1995. Biofilm formation and its elimination from food processing equipment. VTT publications 251.

WIRTANEN, G., SAARELA, M., MATTILA-SANDHOLM, T. 2000. Biofilms – Impact on hygiene in food industries. In Biofilms II: Process analysis and applications. Bryers J. D. (ed). pp. 327-372.

ZHAO, T., DOYLE, M. P., ZHAO, P. 2004. Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. In Applied and Environmental Microbiology, vol. 70, 2004, p. 3996-4003.

https://doi.org/10.1128/AEM.70.7.3996-4003.2004 DOI: https://doi.org/10.1128/AEM.70.7.3996-4003.2004

PMid:15240275

PMCid:444837

Downloads

Published

2010-05-31

How to Cite

Čapla, J. ., Zajác, P. ., Vietoris, V. ., & Bajzí­k, P. . (2010). New methodologies for biofilms control in food industry. Potravinarstvo Slovak Journal of Food Sciences, 4(3), 10–13. https://doi.org/10.5219/17

Most read articles by the same author(s)

<< < 1 2 3 4 5 6