The effect of oregano essential oil on chicken meat lipid oxidation and peroxidation

Authors

  • Mária Angelovičová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 037 641 5805
  • Michal Angelovič Slovak University of Agriculture, Faculty of Engineering, Department of Machines and Production Biosystems, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421037 641 4795
  • Jozef Čapla Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376414371 https://orcid.org/0000-0001-9475-6359
  • Peter Zajác Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376414371 https://orcid.org/0000-0002-4425-4374
  • Petra Folvarčíková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421037 641 5805
  • Jozef Čurlej Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376415825 https://orcid.org/0000-0003-0039-5332

DOI:

https://doi.org/10.5219/1690

Keywords:

oregano essential oil, chicken thigh with skin, freezing, storage, oxidative

Abstract

The study aimed to investigate and evaluate the oxidative stability of chicken thighs with skin stored in freezing conditions due to the effect of oregano essential oil for various times. The results were compared with a control group without the use of oregano essential oil. Samples of chicken thighs with skin were obtained from an experiment performed on a poultry farm in a deep litter breeding system. The results obtained from the application of oregano essential oil to chicken thighs with skin did not show a statistically significant difference (p >0.05) in the dry matter content, fat content and acid value compared to the control group, where coccidiostats were used in starter and growth feed mixtures. A statistically significant difference was found in the peroxide value by applying oregano essential oil to chicken thighs with skin compared to a control group containing coccidiostats in starter and growth feed mixtures when stored for 1 day at room temperature (p £0.01) and 12 months in freezing conditions at -18 °C (p £0.05) and a statistically non-significant difference (p >0.05) when thighs with skin were stored for 6 and 9 months in -18 °C freezing conditions. In the conclusion, it was stated that maintaining the oxidative stability of chicken meat means knowing the factors that affect it and prepare the conditions for its maintenance. Chicken meat is generally susceptible to oxidative damage because it is characterized by a high concentration of polyunsaturated fatty acids. With a sufficient amount of effective antioxidants, chicken meat could be a homoeostatic system, but it remains limited or free of oxidized compounds and reactive components. These questions are the subject of further research in the field of oxidative stability of chicken meat.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ali, S., Zhang, W., Rajpu, T, N., Khan, M. A., Li, CH., Zhou, G. 2015. Effect of multiple freeze–thaw cycles on the quality of chicken breast meat. Food Chemistry, vol. 173, p. 808-814. https://doi.org/10.1016/j.foodchem.2014.09.095 DOI: https://doi.org/10.1016/j.foodchem.2014.09.095

Amaral, A. B., Silva, M. V., Lanes, S. C. S. 2018. Lipid oxidation in meat: mechanisms and protective factors – a review. Food Science and Technology, vol. 38, supl. 1. https://doi.org/10.1590/fst.32518 DOI: https://doi.org/10.1590/fst.32518

Boskovic, M., Glisic, M., Djordjevic, J., Starcevic, M., Glamoclija, N., Glamoclija, N., Djordjevic, V., Baltic, M. Z. 2019. Antioxidative Activity of Thyme (Thymus vulgaris) and Oregano (Origanum vulgare) Essential Oils and Their Effect on Oxidative Stability of Minced Pork Packaged Under Vacuum and Modified Atmosphere. Journal of Food Science, vol. 84, no. 9, p. 2467-2474. https://doi.org/10.1111/1750-3841.14788 DOI: https://doi.org/10.1111/1750-3841.14788

Carvalho, R. H., Ida, E. I., Madruga, M. S., Martínez, S. L., Shimokomaki, M., Estévez, M. 2017. Underlying connections between the redox system imbalance, protein oxidation and impaired quality traits in pale, soft and exudative (PSE) poultry meat. Food Chemistry, vol. 215, p. 129-137. https://doi.org/10.1016/j.foodchem.2016.07.182 DOI: https://doi.org/10.1016/j.foodchem.2016.07.182

Cassens, R. G. 1994. Meat Preservation, Preventing Losses And Assuring Safety. Connecticut, USA : Food and Nutrition Press, Inc. Trumbull. 510 p. ISBN: 0917678346.

Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Bursać Kovačević, D., Pateiro, M., Santos, E. M., Lorenzo, J. M. 2018. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, vol. 113, p. 93-101. https://doi.org/10.1016/j.foodres.2018.06.073 DOI: https://doi.org/10.1016/j.foodres.2018.06.073

Estévez, M., Morcuente, D., Ventanas, S. 2009. Determination of oxidation. In: Handbook of Muscle Foods Analysis. Ed. 1st FL, USA : CRC Press; Boca Raton. p. 221-240. https://doi.org/10.1201/9781420045307 DOI: https://doi.org/10.1201/9781420045307.ch13

Feng, X., ¬¬Lin, C., Na, L., Wang, S., Xu, X., Zhou, G. 2017. Emulsifying properties of oxidatively stressed myofibrillar protein emulsion gels prepared with (−)-Epigallocatechin-3-gallate and NaCl. Journal of Agricultural and Food Chemistry, vol. 63, no. 13, p. 2816. DOI: https://doi.org/10.1021/acs.jafc.6b05517

Gardini, C. H. C. 2000. Efeito da vitamina E no desempenho e na qualidade da carne de frangos de corte: dissertação. Jaboticabal (SP) : Universidade Estadual Paulista.

Ghinimi, S., Budilarto, E., Kamal-Eldin, A. 2017. The new paradigm for lipid oxidation and insights to microencapsulation of omega-3 fatty acids. Comprehensive Reviews in Food Science and Food Safety, vol. 16, p. 1206-1218. https://doi.org/10.1111/1541-4337.12300 DOI: https://doi.org/10.1111/1541-4337.12300

Haščík, P., Eliman, I. O. E., Garlík, J., Kačániová, M., Bobko, M., Kňazovická, V., Vavrišinová, K., Arpášová, H., Bučko, O. 2012. Chemical composition of muscle after pollen application in nutrition of broiler chickens. Potravinarstvo, vol. 6, no. 2, p. 26-32. https://doi.org/10.5219/190 DOI: https://doi.org/10.5219/190

Chaijan, M., Panpipat, W. 2017. Mechanism of oxidation in foods of animal origin. Natural Antioxidants. In Banerjee, R. Verma, A. K. Siddiqui, M. W.: Applications in Foods of Animal Origin. Boca Raton, USA : Apple Academic Press, Inc. 414 p. ISBN 978-1-315-36591-6. DOI: https://doi.org/10.1201/9781315365916-2

Cheng, J. 2016. Lipid oxidation in meat. Journal of Nutrition & Food Sciences, vol. 6, p. 1-3. https://doi.org/10.4172/2155-9600.1000494 DOI: https://doi.org/10.4172/2155-9600.1000494

Jay, J. M., Loessner, M. J., Golden, D. A. 2005. Modern Food Microbiology, 7th Ed. NY : Springer Science and Business Media. 751 p. ISBN 0387231803.

Jazi, V., Farahi, M., Khajali, F., Abousaad, S., Ferket, P., Assadisoumeh, E. 2020. Effect of dietary supplementation of whey powderand Bacillus subtilis on growth performance, gut and hepaticfunction, and muscle antioxidant capacity of Japanese quail. Journal of Animal Physiology and Animal Nutrition, vol. 104, p. 886-897. https://doi.org/10.1111/jpn.13323 DOI: https://doi.org/10.1111/jpn.13323

Jump, D. B. 2002. Dietary polyunsaturated fatty acids and regulation of gene transcription. Current Opinion in Lipidology, vol. 13, p. 155-165. https://doi.org/10.1097/00041433-200204000-00007 DOI: https://doi.org/10.1097/00041433-200204000-00007

Klimentová, M., Angelovičová, M. 2019. Antioxidant effect of oregano essential oil during various storage meat time of hybrid combination Ross 308. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 337-343. https://doi.org/10.5219/1068 DOI: https://doi.org/10.5219/1068

Klimentová, M. 2019. Sledovanie dynamiky zmien produktov oxidácie tukov mäsa v závislosti od doby skladovania a rôznej výživy výkrmových kurčiat (Investigation of the dynamics of changes in meat fat oxidation products depending on storage time and different diets of broiler chickens) : dissertation thesis. Nitra : SUA, 134 p. (In Slovak).

Králová, M. 2015. The effect of lipid oxidation on the quality of meat and meat products. Maso International Journal of Food Science and Technology, vol. 2, p. 125-132.

Leonel, F. R., Oba, A., Pelicano, E. R. L., Zeola, N. M. B. L., BoiagO, M. M., Scatolini, A. M., Lima, T. M. A., Souza, P. A.,. Souza, H. B. A. 2007. Performance, carcass yield, and qualitative characteristics of breast and leg muscles of broilers fed diets supplemented with vitamin E at different ages. Brazilian Journal of Poultry Science, vol. 9, no. 2. https://doi.org/10.1590/S1516-635X2007000200003 DOI: https://doi.org/10.1590/S1516-635X2007000200003

Lorenzo, J. M., Gómez, M. 2012. Shelf life of fresh foal meat under MAP, over wrap and vacuum packaging conditions. Meat Science, vol. 92, p. 610-618. https://doi.org/10.1016/j.meatsci.2012.06.008 DOI: https://doi.org/10.1016/j.meatsci.2012.06.008

Luna, A., Lábaque, M. C., Zygaglo, J. A., Marin, R. H. 2010. Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poultry Science, vol. 89, no. 2, p. 366-370. https://doi.org/10.3382/ps.2009-00130 DOI: https://doi.org/10.3382/ps.2009-00130

Marcinčák, S., Cabadaj, R., Popelka, P., Šoltýsová, L. 2008. Antioxidative effect of oregano supplemented to broilers on oxidative stability of poultry meat. Slovenian Veterinary Research, vol. 45, no. 2, p. 61-66.

Moghrovyan, A., Sahakyan, N., Babayan, A., Chichoyan, N., Petrosyan, M., Trchounian, A. 2019. Essential Oil and Ethanol Extract of Oregano (Origanum vulgare L.) from Armenian Flora as a Natural Source of Terpenes, Flavonoids and other Phytochemicals with Antiradical, Antioxidant, Metal Chelating, Tyrosinase Inhibitory and Antibacterial Activity. Current Pharmaceutical Design, vol. 25, no. 16, p. 1809-1816. https://doi.org/10.2174/1381612825666190702095612 DOI: https://doi.org/10.2174/1381612825666190702095612

Mohamed, A., Jamilah, B., Abbas, K. A., Rahman, R. A. 2008. A review on lipid oxidation of meat in active and modified atmosphere packaging and usage of some stabilizers. Journal of Food, Agriculture and Environment, vol. 6, p. 76-81.

Özkan, O. E., Güney, Ka., Gür, M., Pattabanoglu, E. S., Babat, E., Khalifa, M. M. 2017. Essential Oil of Oregano and Savory; Chemical Composition and Antimicrobial Activity. Indian Journal of Pharmaceutical Education and Research, vol. 51, no. 3, p. S205-208. https://doi.org/10.5530/ijper.51.3s.13 DOI: https://doi.org/10.5530/ijper.51.3s.13

Purriños, L., Bermúdez, R., Franco, D., Carballo, J., Lorenzo, J. M. 2011. Development of volatile compounds during the manufacture of dry-cured “Lacón,” a Spanish traditional meat product. Journal of Food Science and Technology, vol. 76, p. 89-97. https://doi.org/10.1111/j.1750-3841.2010.01955.x DOI: https://doi.org/10.1111/j.1750-3841.2010.01955.x

Richards, M. P. 2006. Handbook of Food Science, Technology, and Engineering. Boca Raton, USA : CRC Press; Taylor & Francis. 3632 p. ISBN 0849398487.

Ross, C. F., Smith, D. M. 2006. Use of volatiles as indicators of lipid oxidation in muscle foods. Comprehensive Reviews in Food Science and Food Safety, vol. 5, p. 18-25. https://doi.org/10.1111/j.1541-4337.2006.tb00077.x DOI: https://doi.org/10.1111/j.1541-4337.2006.tb00077.x

Ruban, S. W. 2009. Lipid peroxidation in muscle food: An overview. Global Veteriania, vol. 3, no. 6, p. 509-513.

Sabikun, N., Bakhsh, A., Ismail, I., Hwang, Y. H., Rahman, M. S., Joo, S. T. 2019. Changes in physicochemical characteristics and oxidative stability of pre- and post-rigor frozen chicken muscles during cold storage. Journal of Food Science and Technology, vol. 56, no. 11, p. 4809-4816. https://doi.org/10.1007/s13197-019-03941-0 DOI: https://doi.org/10.1007/s13197-019-03941-0

Semjon, B., Marcinčaková, D., Koreneková, B., Bartkovsky, M., Nagy, J., Turek, P., Marcin, S. 2020. Multiple factorial analysis of physicochemical and organolepticproperties of breast and thigh meat of broilers fed a dietsupplemented with humic substances. Poultry Science, vol. 99, p. 1750-1760. https://doi.org/10.1016/j.psj.2019.11.012 DOI: https://doi.org/10.1016/j.psj.2019.11.012

Shahidi, F., Wanasundara, U. N. 2002. Methods for measuring oxidative rancidity in fats and oils. Food lipids: Chemistry, Nutrition, and Biotechnology. NEW YORK, USA : Marcel Dekker. p. 484-507. https://doi.org/10.1201/9780203908815.ch14 DOI: https://doi.org/10.1201/9780203908815.ch14

Sharma, M. K., Dinh, T., Adhikari, P. A. 2020. Production performance, egg quality, and small intestine histomorphology of thelaying hens supplemented with phytogenic feed additive. Journal of Applied Poultry Research, vol. 29, p. 362-371. https://doi.org/10.1016/j.japr.2019.12.001 DOI: https://doi.org/10.1016/j.japr.2019.12.001

Shirani, V., Jazi, V., Toghyani, M., Ashayerizadeh, A., Sharifi, F., Barekatain, R. 2019. Pulicaria gnaphalodes powder in broiler diets: consequences for performance, gut health, antioxidant enzyme activity, and fatty acid profile. Poulty Science, vol. 98, p. 2577-2587. https://doi.org/10.3382/ps/pez010 DOI: https://doi.org/10.3382/ps/pez010

Sierżant, K., Korzeniowska, M., Król, B., Orda, J., Wojdyło, A. 2018. Oxidative Stability of the Meat of Broilers Fed Diets Supplemented with Various Levels of Blackcurrant Extract (Ribes nigrum L.) during Different Time Period. Journal of Chemistry, vol. 2018, 9 p. https://doi.org/10.1155/2018/3403975 DOI: https://doi.org/10.1155/2018/3403975

Sirri, F., Tallarico, N., MeluzzI, A., Franchini, A. 2003. Fatty acid composition and productive traits of broiler fed diets containing conjugated linoleic acid. Poultry Science, vol. 82, p. 1356-1361. https://doi.org/10.1093/ps/82.8.1356 DOI: https://doi.org/10.1093/ps/82.8.1356

Tkačová, J., Angelovičová, M. 2013. Antioxidačná aktivita lucernovej múčky a kvalita kuracieho mäsa (Antioxidant activity of alfalfa meal and quality of chicken meat). Nitra : SUA, 99 p. ISBN 978-80-552-1116-9. (In Slovak)

Wąsowicz, E., ¬Gramza, A., Hęś, M., Jeleń, H. H., Korczak, J., Małecka, M., Szkudlarz, S. M., Rudzińska, M., amotyja, U., Wojtasiak, R. Z. 2004. Oxidation of lipids in food. Polish Journal of Food and Nutrition Sciences, vol. 54, p. 87-100.

Wood, J., Richardson, R., Nute, G., Fisher, A., Campo, M., Kasapidou, E., Sheard, P., Enser, M. 2004. Effects of fatty acids on meat quality: A review. Meat Science, vol. 66, p. 21-32. https://doi.org/10.1016/S0309-1740(03)00022-6 DOI: https://doi.org/10.1016/S0309-1740(03)00022-6

Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I. 2008. Fat deposition, fatty acid composition and meat quality: a review. Meat Science, vol. 78, p. 343-358. https://doi.org/10.1016/j.meatsci.2007.07.019 DOI: https://doi.org/10.1016/j.meatsci.2007.07.019

Published

2021-10-28

How to Cite

Angelovičová, M., Angelovič, M., Čapla, J., Zajác, P., Folvarčíková, P., & Čurlej, J. (2021). The effect of oregano essential oil on chicken meat lipid oxidation and peroxidation. Potravinarstvo Slovak Journal of Food Sciences, 15, 1056–1068. https://doi.org/10.5219/1690

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>