Bromine in chicken eggs, feed, and water from different regions of Ukraine

Authors

  • Oleksandr Orobchenko National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Laboratory for Toxicological Monitoring, Pushkinska St., 83, 61023, Kharkiv, Ukraine, Теl.: 0973797213
  • Yuliia Koreneva National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Laboratory for Toxicological Monitoring, Pushkinska St., 83, 61023, Kharkiv, Ukraine, Tel.: 0996005371 https://orcid.org/0000-0001-9401-7732
  • Anatoliy Paliy National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Laboratory of Veterinary Sanitation and Parasitology, Pushkinska St., 83, 61023, Kharkiv, Ukraine, Теl.: 0662253434 https://orcid.org/0000-0002-9193-3548
  • Kateryna Rodionova Odesa State Agrarian University, Faculty of Veterinary madicine, Department of Veterinary Hygiene, Sanitary and Expertise, Panteleimonovskaya Str., 13, 65012, Odesa, Ukraine, Tel.: 0662486856 https://orcid.org/0000-0002-7245-4525
  • Mikola Korenev State Biotechnological University, Department of internal diseases and clinical diagnostics of animals, Mala Danylivka, 62341, Derhachi district, Kharkiv region, Ukraine, Tel.: 0958010659
  • Natalіya Kravchenko Kharkiv State Zooveterinary Academy, Department of clinical diagnostics and clinical biochemistry, Mala Danylivka, 62341, Derhachi district, Kharkiv region, Ukraine, Tel.: 0509838531
  • Olena Pavlichenko State Biotechnological University, Department of Sanitation, Hygiene and Forensic Veterinary Medicine, 44 Alchevskih Str., 61002, Kharkiv, Ukraine, Tеl.: 050-026-35-30
  • Svetlana Tkachuk National University of Life and Environmental Sciences of Ukraine, Department of Veterinary Hygiene, 16 Colonel Potekhin Str., 03041, Kyiv, Ukraine, Теl.: 067-592-09-00 https://orcid.org/0000-0002-6923-1793
  • Oleksandr Nechyporenko Sumy National Agrarian University, Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry, 160 Herasym Kondratiev Str., 40021, Sumy, Ukraine, Tel.: 099-251-22-92
  • Svitlana Nazarenko Sumy National Agrarian University, Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products, 160 Herasym Kondratiev Str., 40021, Sumy, Ukraine, Теl.: 099-141-75-29

DOI:

https://doi.org/10.5219/1710

Keywords:

eggs, bromine, feed, water, laying hens

Abstract

The purpose of these studies was to analyse and compare the content of bromine in samples of chicken eggs, feed, and water from different regions of Ukraine in the dynamics of 2016 – 2020: with an increased risk of bromine in products (Kharkiv, Poltava, Dnipropetrovsk and Mykolaiv regions) and outside the risk zone (Volyn, Vinnytsia and Zaporizhzhia). Studies of bromine content in eggs, feed, and water were performed in the laboratory of toxicological monitoring of the National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine" (Kharkiv) using X-ray fluorescence analysis. As a result of the conducted researches, the increase of the bromine content in chicken eggs in the dynamics of 2016 – 2020 was established: the bromine content increased regardless of the region of the poultry farm location. The highest bromine concentration in chicken eggs was found in Kharkiv, Dnipropetrovsk, Mykolaiv, and Zaporizhia regions. Bromine source in poultry products is the excessive intake of bromine in the poultry body with alimentary environmental factors (feed and water). Bromine content in feed for chickens increased in the research dynamics (from 35.1% in the Poltava region to 2.5 times in the Zaporizhzhia region). It exceeded the established EFSA (4.4% of the total) and the average in Ukraine (51.2% of the total number of samples). In addition, the average bromine content in feed from poultry farms of the studied regions of Ukraine correlated with the number of registered and approved bromine-containing pesticides. The average bromine concentration in water sources in the studied regions of Ukraine had no significant differences compared to the beginning of the study but exceeded the maximum allowable concentration by 21.7% in 2016, 34.8% in 2018 and 39.1% in 2020. The maximum bromine concentration was in water sources in Mykolayiv, Kharkiv, and Dnipropetrovsk regions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aleksandrov, Yu. A. (2000). Kormovye toksikozy sel'skohozjajstvennyh zhivotnyh i pticy : Uchebnoe posobie (Fodder toxicosis of farm animals and poultry: a textbook). Yoshkar-Ola, Russia : Mari State University, pp. 88. ISBN 5-230-00587-4 (In Russian)

Commission Recommendation of 3 March 2014 on the Monitoring of Traces of Brominated Flame Retardants in Food 2014/118/EU (Text with EEA Relevance). Official Journal of the European Union. (L 65/39, Issue 5.3.2014, pр. 39–40). http://data.europa.eu/eli/reco/2014/118/oj

Cruz, R., Cunha, S. C., & Casal, S. (2015). Brominated Flame Retardants and Seafood Safety: A Review. Environment International. (Vol. 77, pр. 116–31). https://doi.org/10.1016/j.envint.2015.01.001 DOI: https://doi.org/10.1016/j.envint.2015.01.001

De la Torre, A., Concejero, M., & Martínez, M. (2012). Concentrations and Sources of an Emerging Pollutant, Decabromodiphenylethane (DBDPE), in Sewage Sludge for Land Application. Journal of Environmental Sciences. (Vol. 24, No. 3, pp. 558–63). https://doi.org/10.1016/S1001-0742(11)60801-2 DOI: https://doi.org/10.1016/S1001-0742(11)60801-2

Dobrzański, Z., Chojnacka, K., Trziszka, T., Opaliński, S., Bobak, Ł., Konkol, D., & Korczyński, M. (2020). The Effect of Dietary Humic Preparations on the Content of Essential and Non-Essential Chemical Elements in Hen Eggs. Animals. (Vol. 10, No. 8, pр. 1252). https://doi.org/10.3390/ani10081252 DOI: https://doi.org/10.3390/ani10081252

Fernandes, A.R., Mortimer, D., Rose, M., Smith, F., Panton, S., & Garcia-Lopez, M. (2015). Bromine Content and Brominated Flame Retardants in Food and Animal Feed from the UK. Chemosphere. (Vol. 150, pp. 1–7). https://doi.org/10.1016/j.chemosphere.2015.12.042 DOI: https://doi.org/10.1016/j.chemosphere.2015.12.042

Giulivo, M., Capri, E., Kalogianni, E., Milacic, R., Majone, B., Ferrari, F., Eljarrat, E., & Barceló, D. (2017). Occurrence of Halogenated and Organophosphate Flame Retardants in Sediment and Fish Samples from Three European River Basins. Science of The Total Environment. (Vol. 586, pp. 782–791). https://doi.org/10.1016/j.scitotenv.2017.02.056 DOI: https://doi.org/10.1016/j.scitotenv.2017.02.056

Good, K. D., & Van Briesen, J. M. (2017). Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania. Environmental Science & Technology. (Vol. 51, No. 20, рp. 11829–11838). https://doi.org/10.1021/acs.est.7b03003 DOI: https://doi.org/10.1021/acs.est.7b03003

Gricenko, A.V., & Vasenko, O.G. (2020). Ekologіchnі problemi harkіvs'koї oblastі ta shljahi їh virіshennja (Ecological problems of Kharkiv region and ways to solve them). Environmental safety: problems and solutions: Coll. Science. Articles of the XVI International Scientific and Practical Conference (Kharkiv, September 14-18, 2020). Kharkiv, Ukrainе. PP (Stil'-Іzdat), рp. 3–6. http://www.niiep.kharkov.ua/sites/default/files/konfer2020.pdf (In Ukrainian)

Huneau-Salaün, A., Cariou, R., Royer, E., Jondreville, C., Balaine, L., Souchet, C., Coton, J., Vénisseau, A., Thomas, R., Rousselière, Y., Charpiot, A., Marchand, P., Dervilly-Pinel, G., Marcon, M., Le Bizec, B., Travel, A., & Le Bouquin, S. (2020). Do farming conditions influence brominated flame retardant levels in pig and poultry products? Animal. (Vol. 14, No. 6, pp. 1313–1321). https://doi:10.1017/S1751731119003392 DOI: https://doi.org/10.1017/S1751731119003392

Korish, M. A., & Attia, Y. A. (2020). Evaluation of Heavy Metal Content in Feed, Litter, Meat, Meat Products, Liver, and Table Eggs of Chickens. Animals (Basel). (Vol. 10, No. 4, pp. 727). https://doi.org/10.3390/ani10040727 DOI: https://doi.org/10.3390/ani10040727

Kutsan, O. T., Orobchenko, O. L., & Kochergin, Yu. A. (2014). Toksiko-biohimichna harakteristika neorganichnih elementiv ta zastosuvannya rentgenofluorestsentnogo analizu u veterinarniy meditsini (navchalnii posybnik), (Toxic-biochemical characteristic of inorganic elements and application of X-ray fluorescence analysis in veterinary medicine (methodical manual)). Kharkiv, Ukrainе: Planet Print, pp. 300. ISBN 978-966-2046-43-4 (In Ukrainian)

Kutsan, О. T., Orobchenko, О. L., & Golubev, M. I. (2015). Eko-toksikologicheskaia kharakteristika broma, kak komponenta ratcionov dlia zhivotnykh (Eco-toxicology of bromine, as a component of rations for animals). Veterinary medicine of Ukraine. (Vol. 5, pp. 24–27). (In Ukrainian) http://base.dnsgb.com.ua/files/journal/Veterinarna-medicina-Ukrainy/VMU-2015-05/9.pdf

Kutsan, О. Т., Orobchenko, O. L., & Koreneva, Yu. M. (2020). The Quality and Safety of Eggs Obtained from Laying Hens after Their Experimental Poisoning with Sodium Bromide. Journal for Veterinary Medicine, Biotechnology and Biosafety. (Vol. 6, No. 1, pp. 25–30). https://doi.org/10.36016/JVMBBS-2020-6-1-5 DOI: https://doi.org/10.36016/JVMBBS-2020-6-1-5

Larina, Y., & Popov, O. (2020). Сurrent trends in the development of the egg and egg products market in ukraine. Economics and enterprise management. (Vol. 45, рp. 113–120). https://doi.org/10.32843/infrastruct45-19 DOI: https://doi.org/10.32843/infrastruct45-19

Lim, S. R., & Schoenung, J. M. (2010). Human Health and Ecological Toxicity Potentials Due to Heavy Metal Content in Waste Electronic Devices with Flat Panel Displays. Journal of Hazardous Materials. (Vol. 177, No. 1-3, pp. 251–59). https://doi.org/10.1016/j.jhazmat.2009.12.025 DOI: https://doi.org/10.1016/j.jhazmat.2009.12.025

Mctigue, N. E., Cornwell, D. A., Graf, K., & Brown, R. (2014). Occurrence and consequences of increased bromide in drinking water sources. Journal – American Water Works Association. (Vol. 106, No. 11, рp. E492–E508). https://doi.org/10.5942/jawwa.2014.106.0141 DOI: https://doi.org/10.5942/jawwa.2014.106.0141

Ministry of Environmental Protection and Natural Resources of Ukraine. (2021). State Register of Pesticides and Agrochemicals Permitted for Use in Ukraine. https://mepr.gov.ua/content/derzhavniy-reestr-pesticidiv-i-agrohimikativ-dozvolenih-do-vikoristannya-v-ukraini-dopovnennya-z-01012017-zgidno-vimog-postanovi-kabinetu-ministriv-ukraini-vid-21112007--1328.html

Nalyvayko L., Rodionova K., Pankova S., Shomina N., Katerynych O., & Khimych M. (2021). Comparative characteristics of eggs of chickens of domestic and foreign selection in their diverse age. Potravinarstvo Slovak Journal of Food Sciences. (Vol. 15, pp. 245–253). https://doi.org/10.5219/1501 DOI: https://doi.org/10.5219/1501

Nimalaratne, Ch., & Wu, J. (2015). Hen Egg as an Antioxidant Food Commodity: A Review. Nutrients. (Vol. 7, No. 10, pp. 8274–93). https://doi.org/10.3390/nu7105394. DOI: https://doi.org/10.3390/nu7105394

Nisianakis, P., Giannenas, I., Gavriil, A., Kontopidis, G., & Kyriazakis, I. (2009). Variation in Trace Element Contents Among Chicken, Turkey, Duck, Goose, and Pigeon Eggs Analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Biological Trace Element Research. (Vol. 128, No. 1, pp. 62–71). https://doi.org/10.1007/s12011-008-8249-x DOI: https://doi.org/10.1007/s12011-008-8249-x

NRC. Committee on Minerals and Toxic Substances, Board on Agriculture and Natural Resources, Division on Earth and Life Studies. 2005. Mineral tolerance of animals, Second Revised Edition. Washington, USA: National Academies Press, 500 р. ISBN 0-309-55027-0 (pdf)

Orobchenko, O. L. (2013). Monіtoringovі doslіdzhennia vmіstu neorganіchnikh elementіv u produktcії ptakhіvnitctva (Monitoring studies of the content of inorganic elements in poultry products). Modern poultry farming. (Vol. 4, No. 125, pp. 4–9). http://nbuv.gov.ua/UJRN/Sps_2013_4_4 (In Ukrainian)

Paliy A., Mashkey A. M., Sumakova N. V., & Paliy A. P. (2018). Distribution of poultry ectoparasites in industrial farms, farms, and private plots with different rearing technologies. Biosystems Diversity. (Vol. 26, No. 2, pp. 153–159). https://doi.org/10.15421/011824 DOI: https://doi.org/10.15421/011824

Pavelka, S. (2004). Metabolism of bromide and its interference with the metabolism of iodine. Physiological Research. (Vol. 53, pp. 81–90). http://www.biomed.cas.cz/physiolres/pdf/53%20Suppl%201/53_S81.pdf

Perminova, T. (2017). Bromine in the Natural Environments of the Tomsk Region and its Toxicity Assessment. A dissertation thesis for the degree of Doctor of University of technology of Troyes and Candidate of geological-mineralogical sciences (the Earth sciences) 25.00.36. Tomsk-Trois, Russia: pp. 182. http://www.theses.fr/2017TROY0027

Poma, G., Malarvannan, G., Voorspoels, S., Symons, N., Malysheva, S. V., Van Loco, J., & Covaci, A. (2016). Determination of Halogenated Flame Retardants in Food: Optimization and Validation of a Method Based on a Two-Step Clean-up and Gas Chromatography-Mass Spectrometry. Food Control. (Vol. 65, pp. 168–76). https://doi.org/10.1016/j.foodcont.2016.01.027 DOI: https://doi.org/10.1016/j.foodcont.2016.01.027

Pořízka, J., Michalec, A., & Diviš, P. (2019). Comparison of chemical composition of eggs from laying hens housed in different production facilities: a market study. Potravinarstvo Slovak Journal of Food Science. (Vol. 13, No. 1, pp. 402–407). https://doi.org/10.5219/1060 DOI: https://doi.org/10.5219/1060

Pribilova, V. M. (2015). Otcenka kachestvennogo sostava pitevykh podzemnykh vod senoman-nizhnemelovogo vodonosnogo kompleksa na territorii Kharkovskoi oblasti (Evaluation of underground drinking water quality in cenomanian-lower cretaceous aguifer complex in Kharkiv region). Visnyk of V. N. Karazin Kharkiv National University, series “Geology. Geography. Ecology”. (No. 43, pp. 75–82). https://periodicals.karazin.ua/geoeco/article/view/5746/5306 (In Ukrainian)

Réhault-Godbert, S., Guyot, N., & Nys, Y. (2019). The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients. (Vol. 11, No. 3, pp. 684). https://doi.org/10.3390/nu11030684 DOI: https://doi.org/10.3390/nu11030684

Röttger, A. S., Halle, I., Wagner, H., Breves, G., Dänicke, S., & Flachowsky, G. (2012). The Effects of Iodine Level and Source on Iodine Carry-over in Eggs and Body Tissues of Laying Hens. Archives of Animal Nutrition. (Vol. 66, No. 5, pp. 385–401). https://doi.org/10.1080/1745039X.2012.719795 DOI: https://doi.org/10.1080/1745039X.2012.719795

Rimar, M. V., Kraevskaya, A., & Dulin, I. (2012). Ekologіchna bezpeka vidobuvannia slantcevogo gazu v Ukraїnі (Ecological safety of shale gas production in Ukraine). Regional Economy. (No. 4, pp. 109–114). http://nbuv.gov.ua/UJRN/regek_2012_4_15 (In Ukrainian)

Salwa, A. A. (2016). Determination of some trace elements in chicken eggs from different sources. Journal of Pharmacognosy and Phytochemistry. (Vol. 5, pp. 417–420).

SanPіN 4630-88. Sanіtarnі pravila і normi okhoroni poverkhnevikh vod vіd zabrudnennia (Sanitary rules and norms of protection of surface waters from pollution). 21.10.1991. https://zakon.rada.gov.ua/laws/show/v4630400-88#Text (In Ukrainian)

State Service for Geology and Subsoil of Ukraine (SSGSU). (2021). Archive: groundwater: resources, use, quality. Available at: https://www.geo.gov.ua/groundwater-archive/ (In Ukrainian).

Sumaiya, Sh., Nayak, S., Baghel, R. P. S., Nayak, A., Malapure, C. D., & Kumar, R. (2016). Effect of dietary iodine on production of iodine enriched eggs. Veterinary World. (Vol. 9, No. 6, pp. 554–58). https://doi.org/10.14202/vetworld.2016.554-558 DOI: https://doi.org/10.14202/vetworld.2016.554-558

Toor, G. S., Haggard, B. E., & Donoghue, A. M. (2007). Water Extractable Trace Elements in Poultry Litters and Granulated Products. Journal of Applied Poultry Research. (Vol. 16, No. 3, рp. 351–360). https://doi.org/10.1093/japr/16.3.351 DOI: https://doi.org/10.1093/japr/16.3.351

Toralles, I. G., Coelho, G. S. Jr., Costa, V. C., Cruz, S. M., Flores, E. M. M., Mesko, M. F. (2017). A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS. Food Chemistry. (Vol. 15, No. 221, pp. 877–883). https://doi:10.1016/j.foodchem.2016.11.081 DOI: https://doi.org/10.1016/j.foodchem.2016.11.081

United Nations and Environment Programme. (2010). Report of the Methyl Bromide Technical Options Committee (MBTOC) Assessment. Montreal Protocol on Substances That Deplete the Ozone Layer. Kenya, Nairobi. 383 p. ISBN: 978-9966-20-000-6.

Vainikka, P., & Hupa, M. (2012). Review on bromine in solid fuels - Part 2: Anthropogenic occurrence. Fuel. (Vol. 94, рp. 34–51). https://doi.org/10.1016/j.fuel.2011.11.021 DOI: https://doi.org/10.1016/j.fuel.2011.11.021

Van Paemel, M., Dierick, N., Janssens, G., Fievez, V., & De Smet, S. (2010). Selected Trace and Ultratrace Elements: Biological Role, Content in Feed and Requirements in Animal Nutrition – Elements for Risk Assessment. EFSA Supporting Publications. (Vol. 7, No. 7, 1132 р.). https://doi.org/10.2903/sp.efsa.2010.EN-68 DOI: https://doi.org/10.2903/sp.efsa.2010.EN-68

Wang, J. X., Bao, L-J., Shi, L., Liu, L-J., & Zeng, E. Y. (2019). Characterizing PBDEs in Fish, Poultry, and Pig Feeds Manufactured in China. Environmental Science and Pollution Research. (Vol. 26, No. 6, pp. 6014–6022). https://doi.org/10.1007/s11356-018-04057-2 DOI: https://doi.org/10.1007/s11356-018-04057-2

Watson, R. R., De Meester, F., Fernandez, M. L., & Andersen, C. J. (2015). Handbook of Eggs in Human Function, Human Health Handbooks, Vol. 9. Wageningen, Netherlands: Wageningen Academic Publishers, 672 p. ISBN 9789086862542. DOI: https://doi.org/10.3920/978-90-8686-804-9

Wegman, R.C.C., Greve, P.A., De Heer, H., & Hamaker, P. (1981). Methyl bromide and bromide-ion in drainage water after leaching of glasshouse soils. Water, Air, and Soil Pollution. (Vol. 16, pp. 3–11). https://doi.org/10.1007/BF01047038 DOI: https://doi.org/10.1007/BF01047038

Weber, R., Herold, C., Hollert, H., Kamphues, J., Blepp M., & Ballschmiter, K. (2018). Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environmental Sciences Europe. (Vol. 30, No. 1, 42 p.). https://doi.org/10.1186/s12302-018-0166-9 DOI: https://doi.org/10.1186/s12302-018-0166-9

Winid, B. (2015). Bromine and water quality – Selected aspects and future perspectives. Applied Geochemistry. (Vol. 63, рp. 413–435). https://doi.org/10.1016/j.apgeochem.2015.10.004 DOI: https://doi.org/10.1016/j.apgeochem.2015.10.004

World Health Organization. (2018). Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/water_sanitation_health/publications/bromine-02032018.pdf; ISBN 978-92-4-151369-2

Zuiderveena, E. A. R., Slootweg, J. C., & De Boer, J. (2020). Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food. Chemosphere. (Vol. 255, pp. 1–18). https://doi.org/10.1016/j.chemosphere.2020.126816 DOI: https://doi.org/10.1016/j.chemosphere.2020.126816

Downloads

Published

2022-02-10

How to Cite

Orobchenko, O., Koreneva, Y., Paliy, . A., Rodionova, K., Korenev, M., Kravchenko, N., Pavlichenko, O., Tkachuk, S., Nechyporenko, O., & Nazarenko, S. (2022). Bromine in chicken eggs, feed, and water from different regions of Ukraine. Potravinarstvo Slovak Journal of Food Sciences, 16, 42–54. https://doi.org/10.5219/1710