Veterinary and sanitary assessment and disinfection of refrigerator chambers of meat processing enterprises

Authors

  • Kateryna Rodionova Odessa State Agrarian University, Faculty of Veterinary madicine, Department of Veterinary Hygiene, Sanitary and Expertise, Panteleimonovskaya Str., 13, 65012, Odessa, Ukraine, Tel. +380662486856, https://orcid.org/0000-0002-7245-4525
  • Mariia Кhimych Odessa state agrarian university, Faculty of Veterinary madicine, Department of Veterinary Hygiene, Sanitary and Expertise, Panteleimonovskaya Str., 13, 65012, Odessa, Ukraine, Tel. +380677992113 https://orcid.org/0000-0003-2646-3196
  • Anatoliy Paliy National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine», Laboratory of Veterinary Sanitation and Parasitology, Pushkinska St., 83, 61023, Kharkiv, Ukraine, Теl. +380662253434

DOI:

https://doi.org/10.5219/1628

Keywords:

refrigerating chambers, microorganisms, disinfectant, concentration, exposure

Abstract

The results of microbiological studies of air samples of refrigerating chambers of meat processing enterprises are presented. The quantitative composition of the air microbiota of the chambers of the refrigerating shop was studied. It has been established that the technological regimes for cooling meat in cooled chambers (t = +4 °C) and deep freezing chambers (t = -18 °C and -22 °C) have no bacteriostatic effect on the life activity of mold fungi. The developed disinfecting preparation (hydrogen peroxide (8.0 - 10%), acetic acid (10%), peracetic acid (5.0 - 7.0%), stabilizing additives, water) ensures the destruction of sanitary-indicative microorganisms in cold rooms meat processing plants when applied at a concentration of 0.05% - 60 minutes, 0.1% - 30 minutes, 0.15% - 10 minutes and does not have a toxic effect on meat raw materials that are stored in chambers of the refrigeration shop after disinfection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Becker, B., Henningsen, L., Paulmann, D., Bischoff, B., Todt, D., Steinmann, E., Steinmann, J., Florian, H., Brill, H., Steinmann, J. 2019. Evaluation of the virucidal efficacy of disinfectant wipes with a test method simulating practical conditions. Antimicrobial Resistance and Infecttion Control, vol. 8, no. 1, p. 121. https://doi.org/10.1186/s13756-019-0569-4 DOI: https://doi.org/10.1186/s13756-019-0569-4

Berk, Z. 2018. Refrigeration  Chilling and freezing. Food Process Engineering and Technology (3th ed), p. 439-460. https://doi.org/10.1016/B978-0-12-812018-7.00019-1 DOI: https://doi.org/10.1016/B978-0-12-812018-7.00019-1

Bermúdez-Aguirre, D., Welti-Chanes, J. 2016. Chilled Foods: Effects on Shelf-life and Sensory Quality. In Caballero, B., Finglas, P., Toldra, F. Encyclopedia of Food and Health. Cambridge, US : Academic Press, p. 14-18. ISBN 978-0123849472 https://doi.org/10.1016/b978-0-12-384947-2.00144-6 DOI: https://doi.org/10.1016/B978-0-12-384947-2.00144-6

Bogatko, N. M., Sakhniuk, N. I. 2013. The influence of sanitation and hygiene of Coldroom of meat processing enterprises on the security of raw meat during storage. Bulletin of Poltava State Agrarian Academy, vol. 1., р. 106-109. https://doi.org/10.31210/visnyk2013.01.28 (In Ukrainian) DOI: https://doi.org/10.31210/visnyk2013.01.28

Bruckner, S., Albrecht, A., Petersen, B., Kreyenschmidt, J. 2012. Influence of cold chain interruptions on the shelf life of fresh pork and poultry. International Journal of Food Science & Technology, vol. 47, no. 8, p. 1639-1646. https://doi.org/10.1111/j.1365-2621.2012.03014.x DOI: https://doi.org/10.1111/j.1365-2621.2012.03014.x

CMU, 2002. About the statement of the Procedure for selection of samples of production of an animal, vegetable and biotechnological origin for carrying out researches: the Resolution of the Cabinet of Ministers of Ukraine from 14.06.2002 р. No 833. Available at: https://zakon.rada.gov.ua/laws/show/833-2002-п#Text. (in Ukrainian)

Coughlan, L. M., Cotter, P. D., Hill, C., Alvarez-Ordóñez, A. 2016. New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front Microbiol, vol. 7. р. 1641. https://doi.org/10.3389/fmicb.2016.01641 DOI: https://doi.org/10.3389/fmicb.2016.01641

Da Costa Luciano, C., Olson, N., Tipple, A. F. V., Alfa, M. 2016. Evaluation of the ability of different detergents and dis-infectants to remove and kill organisms in traditional biofilm. American journal of infection control, vol. 44, no. 11, p. 243-249. https://doi.org/10.1016/j.ajic.2016.03.040 DOI: https://doi.org/10.1016/j.ajic.2016.03.040

DSTU 5093. 2008. Canned food. Preparation of reagent solutions, dyes, indicators and culture media for microbiological analysis.

DSTU 7670. 2014. Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements.

DSTU ISO 1042. 2005. Laboratory glassware -- One-mark volumetric flasks.

DSTU ISO 4833. 2006. Microbiology of food and animal feed. Horizontal method of counting microorganisms. The technique of counting colonies at temperature 30 °С (ISO 4833:2003, IDT). Kyiv, Russia : Derzhspozhyvstandart of Ukraine, 11 p. (in Ukrainian)

DSTU ISO/IEC 17025. 2006. General requirements for the competence of testing and calibration laboratories.

DSTU ISO/TS 11133-1. 2005. Microbiology of food and animal feeding stuffs -- Guidelines on preparation and production of culture media -- Part 1: General guidelines on quality assurance for the preparation of culture media in the laboratory.

Dudchik, N. V., Kolomiets, N. D., Nezhvinskaya, O. E., Tonko, O. V., Hanenko, O. N., Levshina, N. N., Zhukovsky, V. V., Gavrilenko, V. V. 2013. Estimation of microbial content of air at food-industry enterprises. Health and environment, vol. 22, р. 43-46. (in Russian)

Dukhnytskyi, V. B., Khmelnytskyi, H. O., Boiko, H. V., Ishchenko, V. D. 2011. Veterinary mycotoxicology: textbook. Kyiv, 240 p. (in Ukrainian) ISBN 978-966-2007-58-9

Dymko, R., Pushkova, A., Solomon, V. 2015. Nomenclature and active ingredients of veterinary disinfectants registered in Ukraine. Scientific Bulletin of NUBiP of Ukraine, vol. 221, р. 191-195. (in Ukrainian)

Fagerlund, A., Møretrø, T., Heir, E., Briandet, R., Langsrud, S. 2017. Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces. Applied and environmental microbiology, vol. 83, no. 17, p. e01046-17. https://doi.org/10.1128/AEM.01046-17 DOI: https://doi.org/10.1128/AEM.01046-17

Glazova, N. V. 2007. Time-tested disinfectant. Milk processing: technology, equipment, products, vol 5, р. 63. (in Russian)

Golovko, A. M., Rublenko, I. O. 2010. Veterinary sanitary microbiology: textbook. Kiev, Russia : Agricultural education, 84 p. ISBN 978-966-7906-92. (in Ukrainian)

Göranssona, M., Jevingerb, Å., Nilssonc, J. 2018. Shelf-life variations in pallet unit loads during perishable food supply chain distribution. Food Control, vol. 84, p. 552-560. https://doi.org/10.1016/j.foodcont.2017.08.027 DOI: https://doi.org/10.1016/j.foodcont.2017.08.027

GOST 12.1.007-76. 1977. Occupational safety standards system. Noxious substances. Classification and general safety requirements.

GOST 26930-86. 1987. Raw material and food-stuff. Method for determination of arsenic content.

GOST 30178. 1996. Raw material and food-stuffs. Atomic absorption method for determination of toxic elements.

Hawley, B., Casey, M., Virji, M. A., Cummings, K. J., Johnson, A., Cox-Ganser, J. 2018. Respiratory Symptoms in Hospital Cleaning Staff Exposed to a Product Containing Hydrogen Peroxide, Peracetic Acid, and Acetic Acid. Ann Work Expo Health, vol. 62, no. 1, р. 28-40. https://doi.org/10.1093/annweh/wxx087 DOI: https://doi.org/10.1093/annweh/wxx087

Hultman, J., Rahkila, R., Ali, J., Rousu, J., Björkroth, K. J. 2015. Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Appl. Environ. Microbiol, vol. 81, no. 20, р. 7088-7097. https://doi.org/10.1128/AEM.02228-15 DOI: https://doi.org/10.1128/AEM.02228-15

Iliashenko, N. G., Beteva, E. A., Pichugina, T. V., Iliashenko, A. V. 2008. Microbiology of food production. Мosskov: Коlos, 412 p. (in Russian) ISBN 978-5-9532-0512-2

Ishevskiy, A. L., Davydov, I. A. 2017. Freezing as a method of food preservation. Theory and Practice of Meat Processing, vol. 2, p. 43-59. https://doi.org/10.21323/2414-438X-2017-2-2-43-59 DOI: https://doi.org/10.21323/2414-438X-2017-2-2-43-59

ISO 22000. 2005. Food safety management systems — Requirements for any organization in the food chain.

ISO 22002-1. 2009. Prerequisite programmes on food safety — Part 1: Food manufacturing.

Kaalea, L. D., Eikevik, T. M., Rustad, T., Kolsaker, K. 2011. Superchilling of food: A review. Journal of Food Engineering, vol. 107, no. 2, p. 141-146. https://doi.org/10.1016/j.jfoodeng.2011.06.004 DOI: https://doi.org/10.1016/j.jfoodeng.2011.06.004

Kanishchev, V. V., Eremeeva, N. I. 2016. Choice and use of current disinfectants. Desired and reality. Disinfection business, vol. 1, p. 28-36. (in Russian)

Kovalenko, V. L., Nedosekov, V. V. 2011. Methodical approaches to control of disinfectants for veterinary medicine. Kyiv, 219 p. (in Ukrainian)

Kovalenko, V. L., Nychik, S. A., Mandyga, M. S. 2014. Methods of control of disinfectants: handbook. Kyiv, 219 p. (in Ukrainian)

Kuchma, I. 2004. Antiseptic and disinfectants. Provizor, vol. 11, 160 p. (in Russian)

Kukhtyn, M., Salata, V., Berhilevych, O., Malimon, Z., Tsvihun, A., Gutyj, B., Horiuk, Y. 2020a. Evaluation of storage methods of beef by microbiological and chemical indicators. Potravinarstvo Slovak Journal of Food Sciences, vol. 14, no. 1, p. 602-611. https://doi.org/10.5219/1381 DOI: https://doi.org/10.5219/1381

Kukhtyn, M., Salata, V., Pelenyo, R., Selskyi, V., Horiuk, Yu., Boltyk, N., Ulko, L., Dobrovolsky, V. 2020b. Investigation of zeranol in beef of ukrainian production and its reduction with various technological processing. Potravinarstvo Slovak Journal of Food Sciences, vol. 14, no. 1, p. 95-100 https://doi.org/10.5219/1224 DOI: https://doi.org/10.5219/1224

Larsen, M. H., Dalmasso, M., Ingmer, H., Langsrud, S., Malakauskas M., Mader, A., Møretrø, T., Mozina, S. S., Rychli, K., Wagner, M., Wallace, R. J., Zentek, J., Jordan, K. 2014. Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control, vol. 44, p. 92-109. https://doi.org/10.1016/j.foodcont.2014.03.039 DOI: https://doi.org/10.1016/j.foodcont.2014.03.039

Mohapatra, D., Kumar, S., Kotwaliwale, N., Kumar, S. K. 2017. Critical factors responsible for fungi growth in stored food grains and non-Chemical approaches for their control. Industrial Crops and Products, vol. 108, p. 162-182. https://doi.org/10.1016/j.indcrop.2017.06.039 DOI: https://doi.org/10.1016/j.indcrop.2017.06.039

Møretrø, T., Langsrud, S., Heir, E. 2013. Bacteria on meat abattoir meat production process surfaces after sanitation: characterisation of survival properties of Listeria monocytogenes and the commensal bacterial flora. Adv Microbiol, vol. 3, р. 255-264. https://doi.org/10.4236/aim.2013.33037 DOI: https://doi.org/10.4236/aim.2013.33037

Møretrø, T., Schirmer, B. C. T., Heir, E., Fagerlund, A., Hjemli, P., Langsrud, S. 2017. Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int Journal Food Microbiol, vol. 241, р. 215-224. https://doi.org/10.1016/j.ijfoodmicro.2016.10.025 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.10.025

Ortiz, S., López-Alonso, V., Rodríguez, P., Martínez-Suárez, J. V. 2015. The connection between persistent, disinfectant-resistant Listeria monocytogenes strains from two geographically separate Iberian pork processing plants: evidence from comparative genome analysis. Appl Environ Microbiol, vol. 82, р. 308-317. https://doi.org/10.1128/AEM.02824-15 DOI: https://doi.org/10.1128/AEM.02824-15

Paliy, A. P. 2018. The effectiveness of the antibacterial action of the disinfectant "Ecocide C" against mycobacteria. Ukrainian Journal of Ecology, vol. 8, no. 1, p. 141-147. https://doi.org/10.15421/2018_198 (in Ukrainian) DOI: https://doi.org/10.15421/2018_198

Paliy, A. P., Rodionova, K. O. 2016. Disinfection of technological equipment and production facilities of meat processing enterprises: method. recommendations. Kharkiv, 44 p. (in Ukrainian)

Paliy, A. P., Rodionova, K. O. 2017. Preventive disinfection of technological equipment and production facilities of meat processing enterprises. Scientists Notes UO VGAVM, Vitebsk, vol. 53, no. 1, p. 119-122. Available at: http://repo.vsavm.by/handle/123456789/1367. (in Russian)

Paliy, A. P., Rodionova, K. O., Braginec, M. V., Paliy, A. P., Nalivayko, L. I. 2018. Sanitary-hygienic evaluation of objects of meat processing enterprises and means of their sanation. Ukrainian Journal of Ecology, vol. 8, no. 2, р. 81-88. https://doi.org/10.15421/2018_313

Paliy, A. P., Rodionova, K. O., Palii, A. P. 2017. Contamination of animal and poultry meat and means to reduce it. Food science and technology, vol. 11, no. 4, p. 64-71. (in Ukrainian) https://doi.org/10.15673/fst.v11i4.732 DOI: https://doi.org/10.15673/fst.v11i4.732

Pędziwiatr, P., Mikołajczyk, F., Zawadzki, D., Mikołajczyk, K., Bedka, A. 2018. Decomposition of hydrogen perodixe – kinetics and review of chosen catalysts. Acta Innovations, vol. 26, р. 45-52. https://doi.org/10.32933/ActaInnovations.26.5 DOI: https://doi.org/10.32933/ActaInnovations.26.5

Prokopenko, A.A. 2013. The application technology of UV irradiators-recirculators with increased e ciency to the air-decontamination in the shops of the meat processing factories. Problems of Veterinary Sanitary, Hygiene and Ecology, vol. 2, no. 10, p. 43-46. http://elibrary.ru/download/ elibrary_21835997_78915536.pdf. (in Russian)

Rabenau, H. F., Schwebke, I., Blümel, J. Eggers, M., Glebe, D., Rapp, I., Sauerbrei, A., Steinmann, E., Steinmann, J., Willkommen, H., Wutzler, P. 2020. Guideline for testing chemical disinfectants regarding their virucidal activity within the field of human medicine. Bundesgesundheitsbl, vol. 63, no. 5, р. 645-655. https://doi.org/10.1007/s00103-020-03115-w DOI: https://doi.org/10.1007/s00103-020-03115-w

Rodionova, K. O. 2017. Control of microbiological safety (Campylobacter spp.) Of poultry carcasses in the process of their processing. Bulletin of the Poltava State Agrarian Academ, vol. 2, p. 69-74. Available at: http://dspace.pdaa.edu.ua:8080/bitstream/123456789/4938/1/Вісник_3_2017.pdf#page=136. (in Ukrainian)

Rodionova, K. O., Paliy, A. P. 2017. Ensuring the microbiological safety of poultry meat in the poultry processing industry. Problems of zooengineering and veterinary medicine: a collection of scientific works of the Kharkiv State Zooveterinary Academy, vol. 34, no. 2, p. 327-332. (in Ukrainian)

Ryabchenko, N. O. 2016. Infusion of refrigerated storage on the quality of food products. Scientific works SWorld. vol. 1, no. 42, p. 88-93. (in Ukrainian)

Saá Ibusquiza, P., Herrera, J. J., Cabo, M. L. 2011. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol, vol. 28., р. 418-425. https://doi.org/10.1016/j.fm.2010.09.014 DOI: https://doi.org/10.1016/j.fm.2010.09.014

Salata, V., Kukhtyn, M., Pekriy, Y., Horiuk, Y., Horiuk, V. 2018. Activity of washing-disinfecting means “San-active” for sanitary treatment of equipment of meat processing enterprises in laboratory and manufacturing conditions. Ukrainian Journal of Veterinary and Agricultural Sciences, vol. 1, no.1, р. 10-16. https://doi.org/10.32718/ujvas1-1.02 DOI: https://doi.org/10.32718/ujvas1-1.02

Stonehouse, G. G., Evans, J. A. 2015. The use of supercooling for fresh foods: A review. Journal of Food Engineering, vol. 148, р. 74-79. https://doi.org/10.1016/j.jfoodeng.2014.08.007 DOI: https://doi.org/10.1016/j.jfoodeng.2014.08.007

Stopiglia, C. D. O., Carissimi, M., Scroferneker, M. S., Fortes, C. B. B. 2011. Microbiological evaluation of peracetic acid for disinfection of acrylic resins. Rev Odonto Cienc, vol. 26, no. 3, р. 238-241. https://doi.org/10.1590/S1980-65232011000300008 DOI: https://doi.org/10.1590/S1980-65232011000300008

Tishyn, O., Kopijchuk, G., Khomiak, R., Khyrivskyy, O., Orynchak, Т. 2017. Bactericidal and disinfective properties of disinfectant «Arquadez–plus». Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, vol. 19, no. 78, р. 68-73. https://doi.org/10.15421/nvlvet7814 DOI: https://doi.org/10.15421/nvlvet7814

Tomasino, S. F. 2013. Development and assessment of disinfectant efficacy test methods for regulatory purposes. American Journal of Infection Control, vol. 41, no. 5, р. 72-76. https://doi.org/10.1016/j.ajic.2012.11.007 DOI: https://doi.org/10.1016/j.ajic.2012.11.007

Wang, J., Tao, D., Wang, S., Li, C., Li, Y., Zheng, F., Wu, Z. 2019. Disinfection of lettuce using organic acids: an ecological analysis using 16S rRNA sequencing. RSC Adv., vol. 9, р. 17514-17520. https://doi.org/10.1039/C9RA03290H DOI: https://doi.org/10.1039/C9RA03290H

Zavgorodniy, A. I., Stegniy, B. T., Paliy, A. P., Gorjeev, V. M., Smirnov, A. M. 2013. Scientific and practical aspects of disinfection in veterinary medicine: monograph. Kharkiv, 222 p. ISBN 978-966-2445-59-6. (in Ukrainian)

Zwirzitz, B., Wetzels, S. U., Dixon, E. D., Stessl, B., Zaiser, A., Rabanser, I., Thalguter, S., Pinior, B., Roch, F.-F., Strachan, C., Zanghellini, J., Dzieciol, M., Wagner, M., Selberherr, E. 2020. The sources and transmission routes of microbial populations throughout a meat processing facility. npj Biofilms and Microbiomes, vol. 6, no. 2020, р. 26. https://doi.org/10.1038/s41522-020-0136-z DOI: https://doi.org/10.1038/s41522-020-0136-z

Published

2021-07-12

How to Cite

Rodionova, K., Кhimych M., & Paliy, A. (2021). Veterinary and sanitary assessment and disinfection of refrigerator chambers of meat processing enterprises. Potravinarstvo Slovak Journal of Food Sciences, 15, 616–626. https://doi.org/10.5219/1628

Most read articles by the same author(s)