Antibiofilm and antioxidant activity of Rosmarinus officinalis essential oil

Authors

  • Lucia Galovičová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit Science, Viticulture and Enology, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, AgroBioTech Research Centre, Slovak University of Agriculture, Tulipánová 7, 949 76, Nitra, Slovakia, +421 907 260 116 https://orcid.org/0000-0002-1203-4115
  • Petra Borotová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, +421 908 131 305 https://orcid.org/0000-0003-0278-4323
  • Veronika Valková Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Fruit Science, Viticulture and Enology, Tulipánová 7, 949 76, Nitra, Slovakia, AgroBioTech Research Centre, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, +421 911 633 386 https://orcid.org/0000-0001-7048-6323
  • Miroslava Kačániová Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Fruit Science, Viticulture and Enology, Tulipánová 7, 949 76, Nitra, Slovakia, Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland, +421 905 499 166 https://orcid.org/0000-0002-4460-0222

DOI:

https://doi.org/10.5219/1693

Keywords:

biofilm, Stenotrophomonas maltophilia, Bacillus subtilis, essential oil, MALDI-TOF MS Biotyper

Abstract

The aim of the work was to explore the antioxidant potential and antibiofilm activity of the Rosmarinus officinalis essential oil. The DPPH method was used to determine the antioxidant activity. The agar microdilution method was used to determine the minimum biofilm inhibiting concentration (MBIC). The MALDI-TOF MS Biotyper was used to evaluate the antibiofilm activity on the wood and glass surface. Vapor phase antimicrobial analysis was used to determine the effect on the food model. The antioxidant activity was 28.76 % ± 2.68 %. The MBIC for Stenotrophomonas maltophilia was 25 µL.mL-1 and for Bacillus subtilis 12.5 µL.mL-1. Analysis of the mass spectra of S. maltophilia revealed an inhibitory effect from the 5th, which persisted until the end of the experiment. Analysis of the mass spectra of B. subtilis showed an inhibitory effect from the 7th of the experiment. The experiments showed an effect on both tested surfaces. The food model showed a more pronounced effect of the Rosmarinus officinalis essential oil against B. subtilis. We assume that the effect of the essential oil is to disrupt the polysaccharide structure of the biofilm and consequently reduce the resistance of the biofilm. We have established that MALDI-TOF MS Biotyper is a suitable tool for evaluating changes in biofilm structure and could find more significant application for the study of biofilms in food and clinical practice.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amjadi, S., Almasi, H., Ghorbani, M., Ramazani, S. 2020. Reinforced ZnONPs/ rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydrate Polymers, vol. 232, no. 15, p. 115800. https://doi.org/10.1016/j.carbpol.2019.115800 DOI: https://doi.org/10.1016/j.carbpol.2019.115800

Ceylan, O., Uğur, A., Saraç, N., Ozcan, F., Baygar, T. 2014. The in vitro antibiofilm activity of Rosmarinus officinalis L. essential oil against multiple antibiotic resistant Pseudomonas sp. and Staphylococcus sp. Journal of Food, Agriculture & Environment, vol. 12, no. 3-4, p. 82-86.

Elhariry, H., Abuzaid, A. A., Khiralla, G. M., Gherbawy, Y. 2013. Antibiofilm formation and anti‐adhesive (to HEp‐2 cells) effects of rosemary water extract against some food‐related pathogens. International Journal of Food Science & Technology, vol. 49, no. 4, p. 1132-1141. https://doi.org/10.1111/ijfs.12409 DOI: https://doi.org/10.1111/ijfs.12409

Elyemni, M., Louaste, B., Nechad, I., Elkamli, T., Bouia, A., Taleb, M., Chaouch, M., Eloutassi, N. 2019. Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. Scientific World Journal, vol. 2019, no. 1. p. 1-6. https://doi.org/10.1155/2019/3659432 DOI: https://doi.org/10.1155/2019/3659432

Gachkar, L., Yadegari, D., Rezaei, M. B., Taghizadeh, M., Astaneh, S. A., Rasooli, I. 2007. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chemistry, vol. 102, no. 3, p. 898-904. https://doi.org/10.1016/j.foodchem.2006.06.035 DOI: https://doi.org/10.1016/j.foodchem.2006.06.035

Gaudreau, A. M., Labrie, J., Goetz, C., Dufour, S., Jacques, M. 2018. Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms. Journal of Microbiological Methods, vol. 145, no. 1, p. 79-81. https://doi.org/10.1016/j.mimet.2018.01.003 DOI: https://doi.org/10.1016/j.mimet.2018.01.003

Hasan, N., Gopal, J., Wu, H. F. 2011. Rapid, sensitive and direct analysis of exopolysaccharides from biofilm on aluminum surfaces exposed to sea water using MALDI‐TOF MS. Journal of Mass Spectrometry, vol. 46, no. 11, p. 1160-1167. https://doi.org/10.1002/jms.2003 DOI: https://doi.org/10.1002/jms.2003

Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A.,Iqbal, M. 2011. Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian Journal of Infectious Diseases, vol. 15, no. 4, p. 305-311. https://doi.org/10.1590/S1413-86702011000400002 DOI: https://doi.org/10.1016/S1413-8670(11)70197-0

Hussain, A. I., Anwar, F., Chatha, A. S. S., Jabbar, A., Mahboob, S., Nigam, P. S. 2010. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, vol. 41, no. 4. p. 1070-1078. https://doi.org/10.1590/S1517-83822010000400027 DOI: https://doi.org/10.1590/S1517-83822010000400027

Jardak, M., Elloumi-Mseddi, J., Aifa, S., Mnif, S. 2017. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health and Disease, vol. 16, no. 190. https://doi.org/10.1186/s12944-017-0580-9 DOI: https://doi.org/10.1186/s12944-017-0580-9

Kačániová, M., Galovičová, L., Ivanišová, E., Vukovic, N. L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S., Tvrdá, E. 2020a. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods, vol. 9, no. 3, p. 282. https://doi.org/10.3390/foods9030282 DOI: https://doi.org/10.3390/foods9030282

Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V., Borotová, P., Kowalczewski, P. Ł., Kunová, S., Felšöciová, S., Tvrdá, E., Žiarovská, J., Prokeinová, R. B., Vukovic, N. 2020b. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules, vol. 25, no. 7, p. 3956. https://doi.org/10.3390/molecules25173956 DOI: https://doi.org/10.3390/molecules25173956

Kanth, M. K., Mehta, N., Chatli, M. K., Malav, O. P., Kumar, P., Wagh, R. V., Panwar, H. 2018. In-vitro Assessment of Antimicrobial, Antibiofilm and Antioxidant Potential of Essential Oil from Rosemary (Rosmarinus officinalis L. Journal of Animal Research, vol. 8, no. 6, p. 989-998. http://doi.org/10.30954/2277-940X.12.2018.7 DOI: https://doi.org/10.30954/2277-940X.12.2018.7

Kasparavičienė, G., Ramanauskienė, K., Savickas, A., Velžienė, S., Kalvėnienė, Z., Kazlauskienė, D., Ragažinskienė, O., Ivanauskas, K. 2013. Evaluation of total phenolic content and antioxidant activity of different Rosmarinus officinalis L. ethanolic extracts. Biologija, vol. 59, no. 1, p. 39-44. https://doi.org/10.6001/biologija.v59i1.2650 DOI: https://doi.org/10.6001/biologija.v59i1.2650

Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., Alarcon, E. I. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, vol. 4, no. 12, p. e01067. https://doi.org/10.1016/j.heliyon.2018.e01067 DOI: https://doi.org/10.1016/j.heliyon.2018.e01067

Kocot, A. M., Olszewska, M. A. 2017. Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. LWT, vol. 84, no. 1, p. 47-57. https://doi.org/10.1016/j.lwt.2017.05.042 DOI: https://doi.org/10.1016/j.lwt.2017.05.042

Laird, K., Phillips, C. 2011. Vapour phase: a potential future use for essential oils as antimicrobials? Letters in Applied Microbiology, vol. 54, no. 3, p. 169-174. https://doi.org/10.1111/j.1472-765X.2011.03190.x DOI: https://doi.org/10.1111/j.1472-765X.2011.03190.x

Lo, H. H., Chang, S. M. 2014. Identification, characterization, and biofilm formation of clinical Chryseobacterium gleum isolates. Diagnostic Microbiology and Infectious Disease, vol. 79, no. 3, p. 298-302. https://doi.org/10.1016/j.diagmicrobio.2014.01.027 DOI: https://doi.org/10.1016/j.diagmicrobio.2014.01.027

Miladi. H., Mili, D., Slama, R. B., Zouari, S., Ammar, B., Bakhrouf, A. 2016. Antibiofilm formation and anti-adhesive property of three mediterranean essential oils against a foodborne pathogen Salmonella strain. Microbial Pathogenesis, vol. 93, no. 1, p. 22-31. https://doi.org/10.1016/j.micpath.2016.01.017 DOI: https://doi.org/10.1016/j.micpath.2016.01.017

Mohammed, H. A., Al-Omar, M. S,. Mohammed, S. A. A., Aly, M. S. A., Alsuqub, A. N. A., Khan, R.A. 2020. Drying Induced Impact on Composition and Oil Quality of Rosemary Herb, Rosmarinus Officinalis Linn. Molecules, vol. 25, no. 12, p. 2830. https://doi.org/10.3390/molecules25122830 DOI: https://doi.org/10.3390/molecules25122830

Nasr-Eldin, M. A., Abdelhamid, A. G., Baraka, D. M. 2017. Antibiofilm and Antiviral Potential of Leaf Extracts from Moringa oleifera and Rosemary (Rosmarinus officinalis Lam.). Egyptian Journal of Microbiology, vol. 52, no. 1, p. 129-139. https://doi.org/10.21608/EJM.2017.1439.1027 DOI: https://doi.org/10.21608/ejm.2017.1439.1027

Nie, J. Y., Li, R., Jiang, Z. T., Wang, Y., Tan, J., Tang, S. H. and Zhang, Y. 2020. Antioxidant activity screening and chemical constituents of the essential oil from rosemary by ultra‐fast GC electronic nose coupled with chemical methodology. Journal of the Science of Food and Agriculture, vol. 100, no. 8, p. 3481-3487. https://doi.org/10.1002/jsfa.10388 DOI: https://doi.org/10.1002/jsfa.10388

Okoh, O. O., Sadimenko, A. P., Afolayan, A. J. 2011. Antioxidant activities of Rosmarinus officinalis L. essential oil obtained by hydro-distillation and solvent free microwave extraction. African Journal of Biotechnology, vol. 10, no. 20, p. 4207-4211.

Pereira, F. D. E. S., Bonattoa, C. C., Lopes, C. A. P., Pereira, A. L., Silva, L. P. 2015. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Microbial Pathogenesis, vol. 86, no. 1, p. 32-37. https://doi.org/10.1016/j.micpath.2015.07.005 DOI: https://doi.org/10.1016/j.micpath.2015.07.005

Pompilio, A., Savini, V, Fiscarelli, E., Gherardi, G., Di Bonaventura, G. 2020. Clonal Diversity, Biofilm Formation, and Antimicrobial Resistance among Stenotrophomonas maltophilia Strains from Cystic Fibrosis and Non-Cystic Fibrosis Patients. Antibiotics, vol. 9, no. 1, p. 15-31. https://doi.org/10.3390/antibiotics9010015 DOI: https://doi.org/10.3390/antibiotics9010015

Quave, C. L., Plano, L. R. W., Pantuso, T., Bennett, B. C. 2008. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, vol. 118, no. 3, p. 418-428. https://doi.org/10.1016/j.jep.2008.05.005 DOI: https://doi.org/10.1016/j.jep.2008.05.005

Rahbardar, M. G., Amin, B., Mehri, S., Mirnajafi-Zadeh, S. J., Hosseinzadeh, H. 2017. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomedicine & Pharmacotherapy, vol. 86, no. 1, p. 441-449. https://doi.org/10.1016/j.biopha.2016.12.049 DOI: https://doi.org/10.1016/j.biopha.2016.12.049

Rahnama, M., Fakheri, B. A., Mashhady, M. A., Saeidi, S. 2019. Anti-Bacterial and Anti-Biofilm Activity of Glycyrrhiza glabra, Rosmarinus officinalis and Saponaria officinalis Extracts on Important Food Pathogens. Gene, Cell and Tissue, vol. 6, no. 4, p. e96326. http://doi.org/10.5812/gct.96326 DOI: https://doi.org/10.5812/gct.96326

Ranmadugala, D., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., Berenjian, A. 2017. The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochemistry, vol. 62, no. 1, p. 231-240. https://doi.org/10.1016/j.procbio.2017.07.003 DOI: https://doi.org/10.1016/j.procbio.2017.07.003

Sánchez‐Moreno, C., Larrauri, J. A., Saura‐Calixto, F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, vol. 76, no. 2, p. 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2%3C270::AID-JSFA945%3E3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

Teneva, L. D. G., Goranov, B. G., Denkova-Kostova, R. S., Hristova-Ivanova, Y. M., Klisurova, D. I., Slavchev, A. K., Denkova, Z. R., Kostov, G. A. 2020. Chemical composition, antioxidant and antimicrobial activity of essential oils from leaves and flowers of Rosmarinus officinalis. Bulgarian Chemical Communications, vol. 52, no. 1, p. 54-59.

Touazi, L., Aberkane, B., Bellik, Y., Moula, N., Iguer-Ouada, M. 2018. Effect of the essential oil of Rosmarinus officinalis (L.) on rooster sperm motility during 4 °C short-term storage. Veterinary World, vol. 11, no. 5, p. 590-597. http://doi.org/10.14202/vetworld.2018.590-597 DOI: https://doi.org/10.14202/vetworld.2018.590-597

Vieira, M., Bessa, L. J., Martins, M. R., Arantes, S., Teixeira, A. P. S., Mendes, A., Costa, P. M., Belo, A. D. F. 2017. Chemical Composition, Antibacterial, Antibiofilm and Synergistic Properties of Essential Oils from Eucalyptus globulus Labill. and Seven Mediterranean Aromatic Plants. Chemistry & Biodiversity, vol. 14, no. 6, p. e1700006. https://doi.org/10.1002/cbdv.201700006 DOI: https://doi.org/10.1002/cbdv.201700006

Wang, W., Wu, Y. N., Zu, Y. G., Fu, Y. J. 2008. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry, vol. 108, no. 3, p. 1019-1022. https://doi.org/10.1016/j.foodchem.2007.11.046 DOI: https://doi.org/10.1016/j.foodchem.2007.11.046

Yahav, S., Berkovich, Z., Ostrov, I., Reifen, R., Shemesh, M. 2018. Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis. International Journal, vol. 46, no. 2, p. 974-982. https://doi.org/10.1080/21691401.2018.1476373 DOI: https://doi.org/10.1080/21691401.2018.1476373

Zhang, Y., Wei, J., Chen, H., Song, Z., Guo, H., Yuan, Y., Yue, T. 2020. Antibacterial activity of essential oils against Stenotrophomonas maltophilia and the effect of citral on cell membrane. LWT, vol. 117, no. 1, p. 108667. https://doi.org/10.1016/j.lwt.2019.108667 DOI: https://doi.org/10.1016/j.lwt.2019.108667

Published

2021-10-28

How to Cite

Galovičová, L., Borotová, P., Valková, V., & Kačániová, M. (2021). Antibiofilm and antioxidant activity of Rosmarinus officinalis essential oil. Potravinarstvo Slovak Journal of Food Sciences, 15, 1093–1103. https://doi.org/10.5219/1693

Most read articles by the same author(s)

1 2 3 4 5 6 > >>