The microbiological quality of minced pork treated with garlic in combination with vacuum packaging
DOI:
https://doi.org/10.5219/1585Keywords:
packaging, total viable counts, coliform bacteria, Pseudomonas spp., minced porkAbstract
The present study aimed to evaluate the microbial quality of minced pork treated with fresh garlic, dried garlic, and garlic oil in combination with vacuum packing. The growth of Total Viable Counts (TVC), Coliform Bacteria (CB), and Pseudomonas spp. were evaluated. The microbiological analyses were performed by the plate dilution method. The average value of TVC was 8.45 log CFU.g-1 in aerobically packed samples, 5.59 log CFU.g-1 in samples treated with garlic oil, 5.36 log CFU.g-1 in vacuum packed samples, and samples treated with dried garlic, and 4.98 log CFU.g-1 in samples treated with fresh garlic on 8th day of storage. The number of TVC was significantly lower in samples treated with fresh garlic compared to samples treated with dried garlic and garlic oil on the 8th day of storage (p <0.05). The average value of CB was 4.13 log CFU.g-1 in aerobically packed samples, 1.82 log CFU.g-1 in samples treated with garlic oil, the value of CB in vacuum packed samples, in samples treated with fresh garlic and also with dried garlic was lower than 1.00 log CFU.g-1 on 8th day of storage. The number of CB was significantly higher in aerobically packed samples and samples treated with garlic oil compared to vacuum-packed samples, samples treated with fresh garlic and dried garlic on the 8th day of storage (p <0.05). The average number of Pseudomonas spp. was 2.45 in aerobically packed samples, count of Pseudomonas spp. was lower than 1.00 log CFU.g-1 in vacuum packed samples and in the sample with garlic on the 8th day of storage. The number of Pseudomonas spp. was significantly higher in aerobically packed samples in comparison with vacuum-packed samples, samples with fresh garlic, dried garlic, and garlic oil (p <0.05).
Downloads
Metrics
References
Atlas, R. M., Snyder, J. W. 2014. Handbook of media for clinical and public health microbiology. Florida, USA : CRC Press. Taylor & Francis Group, 578 p. ISBN 9780367379315. DOI: https://doi.org/10.1201/b15973
Benkeblia, N. 2004. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT-Food Science and Technology, vol. 37, no. 2, p. 263-268. https://doi.org/10.1016/j.lwt.2003.09.001 DOI: https://doi.org/10.1016/j.lwt.2003.09.001
Cao, Y., Gu, W., Zhang, J., Chu, Y., Ye, X., Hu, Y., Chen, J. 2013. Effects of chitosan, aqueous extract of ginger, onion and garlic on quality and shelf life of stewed-pork during refrigerated storage. Food Chemistry, vol. 141, no. 3, p. 1655-1660. https://doi.org/10.1016/j.foodchem.2013.04.084 DOI: https://doi.org/10.1016/j.foodchem.2013.04.084
Casaburi, A., Piombino, P., Nychas, G. J., Villani, F., Ercolini, D. 2015. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, vol. 45, p. 83-102. https://doi.org/10.1016/j.fm.2014.02.002 DOI: https://doi.org/10.1016/j.fm.2014.02.002
Doulgeraki, A.I., Ercolini, D., Villani, F., Nychas, G.-J. E. 2012. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, vol. 157, no. 2, p. 130-141. https://doi.org/10.1016/j.ijfoodmicro.2012.05.020 DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.05.020
Ejeta, G., Molla, B., Alemayehu, D., Muckle, A. 2004. Salmonella serotypes isolated from minced meat beef, mutton and pork in Addis Ababa, Ethiopia. Revue de Medecine Veterinaire, vol. 155, no. 11, p. 547-551.
Esmer, O. K., Irkin, R., Degirmencioglu, N., Degirmencioglu, A. 2011. The effects of modified atmosphere gas composition on microbiological criteria, color and oxidation values of minced beef meat. Meat Science, vol. 88, no. 2, p. 221-226. https://doi.org/10.1016/j.meatsci.2010.12.021 DOI: https://doi.org/10.1016/j.meatsci.2010.12.021
Fujisawa, H., Suma, K, Origuchi, K., Kumagai, H., Seki, T., Ariga, T. 2008. Biological and chemical stability of garlic-derived allicin. Journal of Agricultural and Food Chemistry, vol. 56, no. 11, p. 4229-4235. https://doi.org/10.1021/jf8000907 DOI: https://doi.org/10.1021/jf8000907
Gheisari, H. R., Ranjbar, V. R. 2012. Antioxidative and antimicrobial effects of garlic in ground camel meat. Turkish Journal of Veterinary and Animal Sciences, vol. 36, no. 1, p. 13-20. https://doi.org/10.3906/vet-1012-620 DOI: https://doi.org/10.3906/vet-1012-620
Gyawali, R., Ibrahim, S. A. 2014. Natural products as antimicrobial agents. Food Control, vol. 46, p. 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047 DOI: https://doi.org/10.1016/j.foodcont.2014.05.047
Harris, J., Cottrell, S., Plummer, S., Lloyd, D. 2001. Antimicrobial properties of Allium sativum (garlic). Journal of Microbiology and Biotechnology, vol. 57, no. 3, p. 282-286. https://doi.org/10.1007/s002530100722 DOI: https://doi.org/10.1007/s002530100722
Huang, S., Liu, B., Ge, D., Dai, J. 2017. Effect of combined treatment with supercritical CO2 and rosemary on microbiological and physicochemical properties of ground pork stored at 4 °C. Meat Science, vol. 125, p. 114-120. https://doi.org/10.1016/j.meatsci.2016.11.022 DOI: https://doi.org/10.1016/j.meatsci.2016.11.022
Hygreeva, D., Pandey, M. C., Radhakrishna, K. 2014. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Science, vol. 98, no. 1, p. 47-57. https://doi.org/10.1016/j.meatsci.2014.04.006 DOI: https://doi.org/10.1016/j.meatsci.2014.04.006
Kaczmarek, K. M., Muzolf-Panek, M., Rudzińska, M., Szablewski, T., Cegielska-Radziejewska, R. 2017. The effect of plant extracts on pork quality during storage. Italian Journal of Food Sciences, vol. 29, no. 4, p. 644-656. https://doi.org/10.14674/IJFS-807
Kačániová, M., Terentjeva, M., Puchalski, C., Petrová, J., Hutková, J., Kántor, A., Mellen, M., Čuboň, J., Haščík, P., Kluz, M., Kordiaka, R., Kunová, S. 2016. Microbiological quality of chicken thighs meat after application of essential oils combination, edta and vaccum packing. Potravinarstvo Slovak Journal of Food Sciences, vol. 10, no. 1, p. 107-113. https://doi.org/10.5219/548 DOI: https://doi.org/10.5219/548
Kim, W. J., Lee, K. A., Kim, K.-T., Chung, M.-S., Cho, S. W., Paik, H.-D. 2011. Antimicrobial effects of onion (allium cepa l.) peel extracts produced via subcritical water extraction against bacillus cereus strains as compared with ethanolic and hot water extraction. Food Science and Biotechnology, vol. 20, no. 4, p. 1101-1106. https://doi.org/10.1007/s10068-011-0149-8 DOI: https://doi.org/10.1007/s10068-011-0149-8
Krisch, J., Pardi, Z., Tserennadmid, R., Papp, T., Vágvölgyi, C. 2010. Antimicrobial effects of commercial herbs, spices and essential oils in minced pork. Acta Biologica Szegediensis, vol. 54, no. 2, p. 131-134.
Kunová, S., Zeleňáková, L., Lopašovský, Ľ., Mellen, M., Čapla, J., Zajác, P., Kačániová, M. 2017. Microbiological quality of chicken breast meat after application of thyme and caraway essential oils. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 167-174. https://doi.org/10.5219/759 DOI: https://doi.org/10.5219/759
Lanzotti, V. 2006. The analysis of onion and garlic. Journal of Chromatography A, vol. 1112, p. 1-2, p. 3-22. https://doi.org/10.1016/j.chroma.2005.12.016 DOI: https://doi.org/10.1016/j.chroma.2005.12.016
Lee, N. K., Paik, H. D. 2016. Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean Journal for Food Science of Animal Resources, vol. 36, no. 4, p. 547-557. https://doi.org/10.5851/kosfa.2016.36.4.547 DOI: https://doi.org/10.5851/kosfa.2016.36.4.547
Leong, J., Morel, P. C. H., Purchas, R. W.,Wilkinson, B. H. P. 2014. The production of pork with garlic flavor notes using garlic essential oil. Meat Science, vol. 84, no. 4, p. 699-705. https://doi.org/10.1016/j.meatsci.2009.11.006 DOI: https://doi.org/10.1016/j.meatsci.2009.11.006
Łopusiewicz, Ł., Jedra, F., Mizieińska, M. 2018. New poly(lactic acid) active packaging composite films incorporated with fungal melanin. Polymers, vol. 10, no. 4, p. 386. https://doi.org/10.3390/polym10040386 DOI: https://doi.org/10.3390/polym10040386
Mead, G. C., Adams, B. W. 1977. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage. British Poultry Science, vol. 18, no. 6, p. 661-670. https://doi.org/10.1080/00071667708416418 DOI: https://doi.org/10.1080/00071667708416418
Michalczyk, M., Macura, R., Banaś, J., Tesarowicz, I., Maciejaszek, I. 2015. Effect of adding oregano essential oil, garlic and tomato preparations separately and in combination on the stability of vacuum-packed minced pork during storage. Annals of Animal Science, vol. 15, no. 1, p. 221-235. https://doi.org/10.2478/aoas-2014-0065 DOI: https://doi.org/10.2478/aoas-2014-0065
Najjaa, H., Chekki, R., Elfalleh, W., Tlili, H., Jaballah, S., Bouzouita, N. 2020. Freeze-dried, oven-dried, and microencapsulation of essential oil from Allium sativum as potential preservative agents of minced meat. Food Science and Nutrition, vol. 8, no. 4, p. 1-9. https://doi.org/10.1002/fsn3.1487 DOI: https://doi.org/10.1002/fsn3.1487
Odeyemi, O .A., Alegbeleye, O. O., Strateva, M., Stratev, D. 2020. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, vol. 19, no. 2, p. 311-331. https://doi.org/10.1111/1541-4337.12526 DOI: https://doi.org/10.1111/1541-4337.12526
Park, S. Y., Chin, K. B. 2014. Effect of fresh garlic on lipid oxidation and microbiological changes of pork patties during refrigerated storage. In Korean Journal for Food Science of Animal Resources, vol. 34, no. 5, p. 638-646. http://doi.org/10.5851/kosfa.2014.34.5.638 DOI: https://doi.org/10.5851/kosfa.2014.34.5.638
Park, S. Y., Yoo, S. S., Shim, J. H., Chin, K. B. 2008. Physicochemical properties, and antioxidant and antimicrobial effects of garlic and onion powder in fresh pork belly and loin during refrigerated storage. Journal of Food Science, vol. 73, no. 8, p. 577-584. https://doi.org/10.1111/j.1750-3841.2008.00896.x DOI: https://doi.org/10.1111/j.1750-3841.2008.00896.x
Pennacchia, C., Ercolini, D., Villani, F. 2011. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, vol. 28, no. 1, p. 84-93. https://doi.org/10.1016/j.fm.2010.08.010 DOI: https://doi.org/10.1016/j.fm.2010.08.010
Queiroz, Y. S., Ishimoto, E. Y., Bastos, D. H. M., Sampaio, G. R., Torres, E. A. F. S. 2009. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chemistry, vol. 115, no. 1, p. 371-374. https://doi.org/10.1016/j.foodchem.2008.11.105 DOI: https://doi.org/10.1016/j.foodchem.2008.11.105
Rajmohan, S., Dodd, C. E. R., Waites, W. M. 2010. Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Journal of Applied Microbiology, vol. 93, no. 2, p. 205-213. https://doi.org/10.1046/j.1365-2672.2002.01674.x DOI: https://doi.org/10.1046/j.1365-2672.2002.01674.x
Sallam, K. I., Ishioroshi, M., and Samejima, K. 2004. Antioxidant and antimicrobial effects of garlic in chicken sausage. LWT-Food Science and Technology, vol. 37, no. 8, p. 849-855. https://doi.org/10.1016/j.lwt.2004.04.001 DOI: https://doi.org/10.1016/j.lwt.2004.04.001
Sebranek, J. G., Sewalt, V. G. H., Robbins, K. L., Houser, T. A. 2005. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Science, vol. 69, no. 2, p. 289-296. https://doi.org/10.1016/j.meatsci.2004.07.010 DOI: https://doi.org/10.1016/j.meatsci.2004.07.010
Sohaib, M., Anjum, F. M., Arshad, M. S., Rahman, U. U. 2016. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. Journal of Food Science and Technology, vol. 53, no. 1, p. 19-30. https://doi.org/10.1007/s13197-015-1985-y DOI: https://doi.org/10.1007/s13197-015-1985-y
Stellato, G., Utter, D. R., Voorhis, A., De Angelis, M., Eren, A. M., Ercolini, D. 2017. A Few Pseudomonas Oligotypes Dominate in the Meat and Dairy Processing Environment. Front. Microbiol., vol. 8, 9 p. https://doi.org/10.3389/fmicb.2017.00264 DOI: https://doi.org/10.3389/fmicb.2017.00264
STN 560100. 1968. Microbiological testing of food, consumer goods and the environment of food operations.
STN EN ISO 4833-1. 2014. Microbiology of food chain. Horizontal method for the enumeration of microorganisms. Part 1: Colony count at 30 degrees C by the pour plate technique.
STN EN ISO 9308-1. 2015. Water quality. Detection and enumeration of Escherichia coli and coliform bacteria. Part 1: Membrane filtration method (ISO 9308-1:2000).
STN ISO 7218. 2000. Microbiology of food and animal feeding stuffs. General rules for microbiological examination.
Stojanović-Radić, Z., Pejčić, M., Joković, N., Jokanović, M., Ivić, M., Šojić, B., Škaljac, S., Stojanović, P., Mihajilov-Krstev, T. 2018. Inhibition of Salmonella Enteritidis growth and storage stability in chicken meat treated with basil and rosemary essential oils alone or in combination. Food Control, vol. 90, p. 332-343. https://doi.org/10.1016/j.foodcont.2018.03.013 DOI: https://doi.org/10.1016/j.foodcont.2018.03.013
Viswanathan, V., Phadatare, A. G., Mukne, A. 2014. Antimycobacterial and antibacterial activity of Allium sativum bulbs. Indian Journal of Pharmaceutical Sciences, vol. 76, no. 3, p. 256-261.
Whitemore, B. B., Naidu, A. S. 2000. Thiosulfinates. In: Naidu, A. S. Natural food antimicrobial systems. Boca Raton, FL: CRC Press, p. 265-380. https://doi.org/10.1201/9781420039368 DOI: https://doi.org/10.1201/9781420039368.ch13
Zhang, H., Kong, B., Xiong, Y. L., Sun, X. 2009. Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4 °C. Meat Science, vol. 81, no. 4, p. 686-692. https://doi.org/10.1016/j.meatsci.2008.11.011 DOI: https://doi.org/10.1016/j.meatsci.2008.11.011
Zhao, F., Zhou, G., Ye, K., Wang, S., Xu, X., Li, C. 2015. Microbial changes in vacuum-packed chilled pork during storage. Meat Science, vol. 100, p. 145-149. https://doi.org/10.1016/j.meatsci.2014.10.004 DOI: https://doi.org/10.1016/j.meatsci.2014.10.004
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.