Quercetin-induced changes in femoral bone microstructure of adult male rabbits
DOI:
https://doi.org/10.5219/607Keywords:
quercetin, femoral bone, histomorphometry, rabbitAbstract
Flavonoids are a group of plant metabolites with antioxidant effects. One of the most abundant flavonoids in the human diet is quercetin. It is found widely in fruits, vegetables and has a lot of beneficial effects on human health. Quercetin has a positive pharmacological effect on bone metabolism and it prevents the organism against bone loss. However, its impact on the size of basic structural units of the compact bone is still unknown. Therefore, the aim of present study was to investigate the impact of the quercetin on femoral bone microstructure in 5-month-old male rabbits. Five rabbits of Californian broiler line were randomly divided into two groups. In the experimental group (E group; n=3), animals were intramuscularly injected with quercetin at dose 1000 μg.kg-1 body weight (bw) for 90 days, 3 times per week. Two rabbits without quercetin administration served as a control group (C group). According to our results, intramuscular application of quercetin had an insignificant effect on cortical bone thickness in male rabbits. In these rabbits, changes in qualitative histological characteristics were present in the middle part of the compacta, where primary vascular longitudinal bone tissue was present and expanded there from the periosteum. Also, a lower number of secondary osteons was found in these animals. From the histomorphometrical point of view, significantly decreased sizes of primary osteons' vascular canals and secondary osteons (p <0.05) were found in rabbits administered by quercetin. Our findings indicate that subchronic administration of quercetin at the dose used in our study had considerable impact on both qualitative and quantitative histological characteristics of the compact bone in adult male rabbits.
Downloads
Metrics
References
Aggarwal, B. B., Heber, D. 2014. Immunonutrition: Interactions of diet, genetics, and inflammation. Boca Raton: CRC Press. p. 53-84. ISBN 9781466503854. DOI: https://doi.org/10.1201/b16661
Agullo, G., Gamet-Payrastre, L., Manenti, S., Viala, C., Remesy, C., Chap, H., Payrastre, B. 1997. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol., vol. 53, p. 1649-1657. https://doi.org/10.1016/S0006-2952(97)82453-7 DOI: https://doi.org/10.1016/S0006-2952(97)82453-7
Baek, K. H., Oh, K. W., Lee, W. Y., Lee, S. S., Kim, M. K., Kwon, H. S., Rhee, E. J., Han, J. H., Song, K. H., Cha, B. Y., Lee, K. W., Kang, M. I. 2010. Association of oxidative stress with postmenopausal osteoporosis and the effect of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int., vol. 87, p. 226-235. https://doi.org/10.1007/s00223-010-9393-9 DOI: https://doi.org/10.1007/s00223-010-9393-9
Boik, J. 2001. Natural Compounds in Cancer Therapy. Oregon Medical Press, Princeton, Minnesota. p. 251-259. ISBN 0-9648280-1-4.
Boots, A. W., Li, H., Schins, R. P., Duffin, R., Heemskerk, J. W., Bast, A., Haenen, G. R. 2007. The quercetin paradox. Toxicol. Appl. Pharmacol., vol. 222, p. 89-96. https://doi.org/10.1016/j.taap.2007.04.004PMID: 17537471 DOI: https://doi.org/10.1016/j.taap.2007.04.004
Braun, K. F., Ehnert, S., Freude, T., Egaña, J. T., Schenck, T. L., Buchholz, A., Schmitt, A., Siebenlist, S., Schyschka, L., Neumaier, M., Stöckle, U., Nussler, A. K. 2011. Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD-1. Scientific World Journal, vol. 11, p. 2348-2357. https://doi.org/10.1100%2F2011%2F471426 DOI: https://doi.org/10.1100/2011/471426
Brookes, P. S., Digerness, S. B., Parks, D. A., Darley-Usmar, V. 2002. Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic. Biol. Med., vol. 32, p. 1220-1228. https://doi.org/10.1016/S0891-5849(02)00839-0 PMID: 12031906 DOI: https://doi.org/10.1016/S0891-5849(02)00839-0
Buss, G. D., Constantin, J., de Lima, L. C., Teodoro, G. R., Comar, J. F., Ishii-Iwamoto, E. L., Bracht, A. 2005. The action of quercetin on the mitochondrial NADH to NAD(+) ratio in the isolated perfused rat liver. Planta Med., vol. 71, p. 1118-1122. https://doi.org/10.1055/s-2005-873174 DOI: https://doi.org/10.1055/s-2005-873174
Carmeliet, P. 2000. Mechanisms of angiogenesis and arteriogenesis. Nat. Med., vol. 6, p. 389-395. https://doi.org/10.1038/74651 PMID: 10742145 DOI: https://doi.org/10.1038/74651
Cirico, T. L., Omaye, S. T. 2005. Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food Chem. Toxicol., vol. 44, p. 510-516. https://doi.org/10.1016/j.fct.2005.08.025 DOI: https://doi.org/10.1016/j.fct.2005.08.025
Cassidy, A., O’Reilly, E. J., Kay, C., Sampson, L., Franz M., Forman, J. P., Curhan, G., Rimm, E. B. 2011. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr., vol. 93, p. 338-347. https://doi.org/10.3945%2Fajcn.110.006783 DOI: https://doi.org/10.3945/ajcn.110.006783
Danihelová, M., Šturdík, E. 2011. Flavonoid natural sources and their importance in the human diet. Potravinarstvo, vol. 5, p. 12-24. https://doi.org/10.5219/160 DOI: https://doi.org/10.5219/160
Davis, J. M., Murphy, E. A., Carmichael, M. D., Davis, B. 2009. Quercetin increases brain andmuscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol., vol. 296, p. R1071–R1077. https://doi.org/10.1152/ajpregu.90925.2008 DOI: https://doi.org/10.1152/ajpregu.90925.2008
de Ricqlés A. J., Meunier, F. J., Castanet, J., Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Bone 3, Bone Matrix and Bone Specific Products. Hall BK. Bocca Raton: CRC Press, p. 1-78. ISBN 0-8493-8823-6.
Dehghan, G., Khoshkam, Z. 2012. Tin(II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chem., vol. 131, p. 422-426. https://doi.org/10.1016/j.foodchem.2011.08.074 DOI: https://doi.org/10.1016/j.foodchem.2011.08.074
Dylevský, I. 2007. General kinesiology (Obecná kineziologie, In Czech). Praha: Grada Publishing, 192 p. ISBN 978-80-247-1649-7.
Egert, S., Rimbach, G. 2011. Which sources of flavonoids: complex diets or dietary supplements? Adv. Nutr., vol. 2, p. 8-14. https://doi.org/10.3945/ DOI: https://doi.org/10.3945/an.110.000026
Enlow, D. H., Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissue. Part I. Tex. J. Sci., vol. 8, p. 405-412.
Enlow, D. H., Brown, S. O. 1958. A comparative histological study of fossil and recent bone tissue. Part III. Tex. J. Sci., vol. 10, p. 187-230.
Formica, J. V., Regelson, W. 1995. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol., vol. 33, p. 1061-1080. https://doi.org/10.1016/0278-6915(95)00077-1 PMID: 8847003 DOI: https://doi.org/10.1016/0278-6915(95)00077-1
Forte, L., Torricelli, P., Boanini, E., Gazzano, M., Rubini, K., Fini, M., Bigi, A. 2016. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study. Acta Biomater., vol. 1, p. 298-308. https://doi.org/10.1016/j.actbio.2015.12.013 DOI: https://doi.org/10.1016/j.actbio.2015.12.013
Greenlee, D. M., Dunnell, R. C. 2010. Identification of fragmentary bone from the Pacific. J. Arch. Sci., vol. 37, p. 957-970. https://doi.org/10.1016/j.jas.2009.11.029 DOI: https://doi.org/10.1016/j.jas.2009.11.029
Guo, C., Hou, G. Q., Li, X. D., Xia, X., Liu, D. X., Huang, D. Y., Du, S. X. 2012. Quercetin triggers apoptosis of lipopolysaccharide (LPS)-induced osteoclasts and inhibits bone resorption in RAW264.7 cells. Cell Physiol. Biochem. vol. 30, p. 123-136. PMID: 22759961 DOI: https://doi.org/10.1159/000339052
Hagiwara, H., Inoue, A., Yamaguchi, A., Yokose, S., Furuya, M., Tanaka, S., Hirose, S. 1996. cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells. Am. J. Physiol., vol. 270, p. C1311-C1318. PMID: 8967430 DOI: https://doi.org/10.1152/ajpcell.1996.270.5.C1311
Halliwell, B., Gutteridge, J. M., Cross, C. E. 1992. Free radicals, antioxidants, and human disease: where are we now? J. Lab. Med., vol. 119, p. 598-620. PMID: 1593209
Harwood, M., Danielewska-Nikiel, B., Borzelleca, J. F., Flamm, G. W., Williams, G. M., Lines, T. C. 2007. A critical review of the data related to the safety of quercetin and lack of evidence of in vitro toxicity including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., vol. 45, no. 11, p. 2179-2205. https://doi.org/10.1016/j.fct.2007.05.015 DOI: https://doi.org/10.1016/j.fct.2007.05.015
Heijnen, C. G., Haenen, G. R., van Acker, F. A., van der Vijgh, W. J., Bast, A. 2001. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol In Vitro, vol. 15, p. 3-6. https://doi.org/10.1016/S0887-2333(00)00053-9 PMID: 11259863 DOI: https://doi.org/10.1016/S0887-2333(00)00053-9
Hooper, L., Cassidy, A. 2006. A review of the health care potential of bioactive compouds. J. Sci. Food Agric., vol. 86, p. 1805-1813. https://doi.org/10.1002/jsfa.2599 DOI: https://doi.org/10.1002/jsfa.2599
Hosokawa, N., Hirayoshi, K., Nakai, A., Hosokawa, Y., Marui, N., Yoshida, M., Sakai, T., Ninoshino, H., Aoike, A., Kawai, K., Nagata, K. 1990. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct., vol. 15, p. 393-401. http://doi.org/10.1247/csf.15.393 DOI: https://doi.org/10.1247/csf.15.393
Hubbard, G. P., Wolffram, S., Lovegrove, J. A., Gibbins, J. M. 2004. Ingestion of quercetin inhibits platelen aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost., vol. 2, p. 2138-2145. https://doi.org/10.1111/j.1538-7836.2004.01067.x DOI: https://doi.org/10.1111/j.1538-7836.2004.01067.x
Chen, C., Zhou, J., Ji, C. 2010. Quercetin: a potential drug to reverse multidrug resistance. Life Sci., vol., 87, p. 333-338. https://doi.org/10.1016/j.lfs.2010.07.004PMID: 20637779 DOI: https://doi.org/10.1016/j.lfs.2010.07.004
Choi, J. A., Kim, J. Y., Lee, J. Y., Kang, C. M., Kwon, H. J., Yoo, Y. D., Kim, T. W., Lee, Y. S., Lee, S. J. 2001. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., vol. 19, p. 837-844. https://doi.org/10.3892/ijo.19.4.837 DOI: https://doi.org/10.3892/ijo.19.4.837
Choi, J. S., Li, X. 2005. Enhanced diltiazem biovailability after oral administration of diltiazem with quercetin to rabbits. Int. J. Pharm., vol. 297, no. 1-2, p. 1-8. https://doi.org/10.1016/j.ijpharm.2004.12.004 DOI: https://doi.org/10.1016/j.ijpharm.2004.12.004
Ishikawa, Y., Kitamura M. 2000. Anti-apoptotic effect of quercetin: Intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int., vol. 58, p. 1078-1087. https://doi.org/10.1046/j.1523-1755.2000.00265.x DOI: https://doi.org/10.1046/j.1523-1755.2000.00265.x
Jackson, S. J., Venema, R. C. 2006. Quercetin inhibits eNOS, microtubule polymerization, and mitotic progression in bovine aortic endothelial cells. J. Nutr., vol. 136, p. 1178-1184. PMID: 16614401 DOI: https://doi.org/10.1093/jn/136.5.1178
Jakubowicz-Gil, J., Rzeski, W., Zdzisinska, B., Dobrowolski, P., Gawron, A. 2008. Cell death and neuronal arborization upon quercetin treatment in rat neurons. Acta Neurobiol Exp. (Wars), vol. 68, p. 139-146. PMID: 18511950
Kang, L. P., Qi, L. H., Zhang, J. P., Shi, N., Zhang, M., Wu, T. M., Chen, J. 2001. Effect of genistein and quercetin on proliferation, collagen synthesis, and type I procollagen mRNA levels of rat hepatic stellate cells. Acta Pharmacol Sin., vol. 22, p. 793-796. PMID: 11749858
Kanno S., Hirano S., Kayama F. 2004. Effects of phytoestrogens and environmentalestrogens on osteoblastic differentiation in MC3T3-E1cells. Toxicol., vol. 196, p. 137-145. https://doi.org/10.1016/j.tox.2003.12.002 DOI: https://doi.org/10.1016/j.tox.2003.12.002
Kavalcová, P., Bystrická, J., Trebichalský, P., Kopernická, M., Hrstková, M., Lenková, M. 2015. Content of total polyphenols and antioxidant activity in selected varieties of onion (Allium cepa L.). Potravinarstvo, vol. 9, p. 494-500. https://doi.org/10.5219/524 DOI: https://doi.org/10.5219/524
Kim, Y. J., Bae, Y. C., Suh, K. T., Jung, J. S. 2006. Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem. Pharmacol., vol. 72, p. 1268-1278. https://doi.org/10.1016/j.bcp.2006.08.021 DOI: https://doi.org/10.1016/j.bcp.2006.08.021
Knab, A. M., Shanely, R. A., Jin, F., Austin, M. D., Sha, W., Nieman, D. C., 2011. Quercetin with vitamin C and niacin does not affect body mass or composition. Appl. Physiol. Nutr. Metab., vol. 36, p. 331-338. https://doi.org/10.1139/h11-015 PMID: 21574787 DOI: https://doi.org/10.1139/h11-015
Kovacevic, G., Matulic, A. 2013. Effect of quercetin on the green hydra (Hydra viridissima Pallas, 1766). Int. J. Biol., vol. 5, p. 57- 63. https://doi.org/10.5539/ijb.v5n3p57 DOI: https://doi.org/10.5539/ijb.v5n3p57
Lakhanpal, P., Kumar, P. 2007. Quercetin: A versatile flavonoid. Int. J. Med. Update, vol. 2, p. 22-37. https://doi.org/10.4314/ijmu.v2i2.39851 DOI: https://doi.org/10.4314/ijmu.v2i2.39851
Leikert, J. F., Räthel, T. R., Wohlfart, P., Cheynier, V., Vollmar, A. M., Dirsch, V. M. 2002. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation, vol. 106, p. 1614-1617. https://doi.org/10.1161/01.CIR.0000034445.31543.43 PMID:12270851 DOI: https://doi.org/10.1161/01.CIR.0000034445.31543.43
Lesniak-Walentyn, A., Kolesarova, A., Medvedova, M., Maruniakova, N., Capcarova, M., Kalafova, A., Hrabia, A., Sirotkin, A. V. 2013. Proliferation and apoptosis in the rabbit ovary after administration of T-2 toxin and quercetin. J. Animal and Feed Sciences, vol. 22, p. 264-271. https://doi.org/10.1016/j.repbio.2012.11.043 DOI: https://doi.org/10.22358/jafs/65995/2013
Liang, W., Luo, Z., Ge, S., Li, M., Du, J., Yang, M., Yan, M., Ye, Z., Luo, Z. 2011. Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur. J. Pharmacol., vol. 670, no. 1, p. 317-324. https://doi.org/10.1016/j.ejphar.2011.08.014 DOI: https://doi.org/10.1016/j.ejphar.2011.08.014
Liu, R. H. 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., vol. 134, p. 3479S-3485S. PMID: 15570057 DOI: https://doi.org/10.1093/jn/134.12.3479S
Manach, C., Regerat, F., Texier, O. 1996. Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr. Res., vol. 16, no. 3, p. 517-534. https://doi.org/10.1016/0271-5317(96)00032-2 DOI: https://doi.org/10.1016/0271-5317(96)00032-2
Martiniaková, M., Vondráková, M., Fabiš, M. 2003. Investigation of the microscopic structure of rabbits compact bone tissue. Scripta medica (Brno), vol. 76, p. 215-220.
Martiniaková, M., Grosskopf, B., Omelka, R., Vondráková, M., Bauerová, M. 2006. Differences in bone microstructure of mammalian skeletons: use of a discriminant function analysis for species identification. J. Forensic Sci., vol. 51, p. 1235-1239. https://doi.org/10.1111/j.1556-4029.2006.00260.x PMID: 17199608 DOI: https://doi.org/10.1111/j.1556-4029.2006.00260.x
Martiniaková, M., Omelka, R., Grosskopf, B., Sirotkin, A. V., Chrenek, P. 2008. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet. Scand., vol. 50, p. 15. https://doi.org/10.1186/1751-0147-50-15 PMID: 18522730 DOI: https://doi.org/10.1186/1751-0147-50-15
Nabavi, S.M., Nabavi, S.F., Eslami, S., Moghaddam, A.H. 2012. In vivo protective effects ofquercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem., vol. 132, no. 2, p. 931-935. https://doi.org/10.1016/j.foodchem.2011.11.070 DOI: https://doi.org/10.1016/j.foodchem.2011.11.070
Nam, T. W., Yoo, C. I., Kim, H. T., Kwon, C. H., Park, J. Y., Kim, Y. K. 2008. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J. Bone Miner. Metab., vol. 26, p. 551-560. https://doi.org/10.1007/s00774-008-0864-2 DOI: https://doi.org/10.1007/s00774-008-0864-2
Nickel, T., Hanssen, H., Sisic, Z., Pfeiler, S., Summo, C., Schmauss, D., Hoster, E., Weis, M. 2011. Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur. J. Nutr., vol. 50, p. 163-172. https://doi.org/ 10.1007/s00394-010-0125-8 PMID: 20652710 DOI: https://doi.org/10.1007/s00394-010-0125-8
Notoya, M., Tsukamoto, Y., Nishimura, H., Woo, J. T., Nagai, K., Lee, I. S., Hagiwara, H. 2004. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur. J. Pharmacol., vol. 485, p. 89-96. https://doi.org/10.1016/j.ejphar.2003.11.058 DOI: https://doi.org/10.1016/j.ejphar.2003.11.058
Okamoto T. 2005. Safety of quercetin for clinical application (Review). Int J Mol Med., vol. 16, p. 275-278. https://doi.org/10.3892/ijmm.16.2.275 DOI: https://doi.org/10.3892/ijmm.16.2.275
Partridge, N. C., Alcorn, D., Michelangeli, V. P., Kemp, B. E., Ryan, G. B., Martin, T. J. 1981. Functional properties of hormonally responsive cultured normal and malignant rat osteoblastic cells. Endocrinology, vol. 108, p. 213-219. https://doi.org/10.1210/endo-108-1-213 DOI: https://doi.org/10.1210/endo-108-1-213
Pries, A. R., Reglin, B., Secomb, T. W. 2005. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension, vol. 46, p. 725-731. https://doi.org/ 10.1161/01.HYP.0000184428.16429.be DOI: https://doi.org/10.1161/01.HYP.0000184428.16429.be
Prouillet, C., Mazièreb, J. C., Mazièreb, C. 2004. Stimultatory effect of naturaly occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through EKR and estrogen receptor pathway. Biochem. Pharmacol, vol. 67, p. 1307-1313. https://doi.org/10.1016/j.bcp.2003.11.009 DOI: https://doi.org/10.1016/j.bcp.2003.11.009
Rahman, A., Fazal, F., Greensill, J., Ainley, K., Parish, J. H., Hadi, S. M., 1992. Strand scission in DNA induced by dietary flavonoids: role of Cu(I) and oxygen free radicals and biological consequences of scission. Mol, Cell Biochem., vol. 111, p. 3-9. PMID: 1588940 DOI: https://doi.org/10.1007/BF00229567
Rice, S., Mason, H. D., Whitehead, S. A. 2006. Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J, Steroid Biochem. Moll Biol., vol. 101, p. 216-225. https://doi.org/10.1016/j.jsbmb.2006.06.021 DOI: https://doi.org/10.1016/j.jsbmb.2006.06.021
Robaszkiewicz, A., Balcerczyk, A., Bartosz, G. 2007. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Bioll Int., vol. 31, p. 1245-1250. https://doi.org/10.1016/j.cellbi.2007.04.009 DOI: https://doi.org/10.1016/j.cellbi.2007.04.009
Ross, J. A., Kasum, C. M. 2002. Dietary flavonoids: bioavailability, metabolic effects and safety. Annul Revl Nutr., vol. 22, p. 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957 DOI: https://doi.org/10.1146/annurev.nutr.22.111401.144957
Sahu, S. C., Washington, M. C. 1991. Quercetin-induced lipid peroxidationand DNA damage in isolated rat-liver nuclei. Cancer Lett., vol. 58, p. 75-79. https://doi.org/10.1016/0304-3835(91)90026-E DOI: https://doi.org/10.1016/0304-3835(91)90026-E
Satué, M., Arriero, M. del M., Monjo, M., Ramis, J. M. 2013. Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem. Pharmacol., vol. 86, no. 10, p. 1476-1486. https://doi.org/10.1016/j.bcp.2013.09.009 DOI: https://doi.org/10.1016/j.bcp.2013.09.009
Satyanarayana, P. S., Singh, D., Chopra, K. 2001. Quercetin, a bioflavonoid, protects again oxidative stress-related renal dysfunction by cyclosporine in rats. Methods Find. Exp. Clin. Pharmacol., vol. 23, p. 175-181. https://doi.org/10.1358/mf.2001.23.4.634641 PMID: 11676225 DOI: https://doi.org/10.1358/mf.2001.23.4.634641
Schmitt, C. A., Dirsch, V. M. 2009. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide, vol. 21, p. 77-91. http://dox.doi.org/10.1016/j.niox.2009.05.006 PMID: 19497380 DOI: https://doi.org/10.1016/j.niox.2009.05.006
Şekeroğlu, Z. A., Şekeroğlu, V. 2012. Effects of Viscum album L. extract and quercetin on methotrexate-induced cyto-genotoxicity in mouse bone marrow cells. Mutat Res., vol. 746, no. 1, p. 56-59. https://doi.org/10.1016/j.mrgentox.2012.02.012 DOI: https://doi.org/10.1016/j.mrgentox.2012.02.012
Sharan, K., Mishra, J. S., Swarnkar, G., Siddiqui, J. A., Khan, K., Kumari, R., Rawat, P., Maurya, R., Sanyal, S., Chattopadhyay, N. 2011. A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J. Bone Miner. Res., vol. 26, p. 2096-2111. https://doi.org/10.1002/jbmr.434 PMID: 21638315 DOI: https://doi.org/10.1002/jbmr.434
Skibola, C. F., Smith, M. T. 2000. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med., vol. 29, p. 375-383. https://doi.org/10.1016/S0891-5849(00)00304-X DOI: https://doi.org/10.1016/S0891-5849(00)00304-X
Son, Y. O., Kook, S. H., Choi, K. C., Jang, Y. S., Choi, Y. S., Jeon, Y. M., Kim, J. G., Hwang, H. S., Lee, J. C. 2008. Quercetin accelerates TNF-α-induced apoptosis of MC3T3-E1 osteoblastic cells through caspase-dependent and JNK-mediated pathways. Eur. J. Phramacol., vol. 579,
p. 26-33. https://doi.org/10.1016/j.ejphar.2007.10.003 PMID: 17988664 DOI: https://doi.org/10.1016/j.ejphar.2007.10.003
Soria, E. A., Eynard, A. R., Bongiovanni, G. A. 2010. Cytoprotective effects ofsilymarin on epithelial cells against arsenic-induced apoptosis incontrast with quercetin cytotoxicity. Life Sci., vol. 87, p. 309-315. https://doi.org/10.1016/j.lfs.2010.07.007 DOI: https://doi.org/10.1016/j.lfs.2010.07.007
Spencer, J. P., Kuhnle, G. G., Williams, R. J., Rice-Evans, C. 2003. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J., vol. 15, p. 173-181. https://doi.org/10.1042/bj20021972 PMID: 12578560 DOI: https://doi.org/10.1042/bj20021972
Stipcevic, T., Piljac, J., Vanden Berghe, D. 2006. Effect of different flavonoids on collagen synthesis in human fibroblasts. Plant Foods Hum. Nutr., vol. 61, p. 29-34. https://doi.org/10.1007/s11130-006-0006-8 PMID: 16642409 DOI: https://doi.org/10.1007/s11130-006-0006-8
Verhoeyen, M. E., Bovy, A., Collins, G., Muir, S., Robinson, S., Vos, C., Colliver, S. 2002. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot., vol. 53, p. 2099-2106. https://doi.org/10.1093/jxb/erf044 DOI: https://doi.org/10.1093/jxb/erf044
Wallerath, T., Li, H., Gӧdtel-Ambrust, U., Schwarz, P. M., Fӧrstermann, U. 2005. A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide, vol. 12, p. 97-104. https://doi.org/10.1016/j.niox.2004.12.004 PMID: 15740983 DOI: https://doi.org/10.1016/j.niox.2004.12.004
Wattel, A., Kamel, S., Prouillet, C., Petit, J. P., Lorget, F., Offord, E., Brazier, M. 2004. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NFκB and AP-1. J. Cell Biochem., vol. 92, p. 285-295. https://doi.org/10.1002/jcb.20071 DOI: https://doi.org/10.1002/jcb.20071
Wein, S., Schrader, E., Rimbach, G., Wolffram, S. 2013. Oral quercetin supplementation lowers plasma sICAM-1 concentrations in female db/db mice. Pharmacol. Pharm., vol. 4, p. 77-83. http://dx-doi.org/10.4236/pp.2013.41011 DOI: https://doi.org/10.4236/pp.2013.41011
Wu, Q. H., Wang, X., Yang, W., Nüssler, A. K., Xiong, L. Y., Kuča, K., Dohnal, V., Zhang, X. J., Yuan, Z. H. 2014. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch. Toxicol., vol. 88, p. 1309-1326. http:/dx.doi.org/10.1007%2Fs00204-014-1280-0 DOI: https://doi.org/10.1007/s00204-014-1280-0
Yamaguchi, M., Weitzmann, M. N. 2011. Quercetin, a potent suppressor of NF-κB and Smad activation in osteoblasts. Int. J. Mol. Med., vol. 28, p. 521-525. https://doi.org/10.3892/ijmm.2011.749 DOI: https://doi.org/10.3892/ijmm.2011.749
Yang, S., Ries, W., Key, Jr L. L. 1998. Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts. Calcif Tissue Int., vol. 63, p. 346-350. PMID: 9744995 DOI: https://doi.org/10.1007/s002239900538
Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R., Chen, S. S. 2004. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., vol. 59, p. 113-122. PMID: 15678717 DOI: https://doi.org/10.1007/s11130-004-0049-7
Zhou, C., Lin, Y. 2014. Osteogenic differentiation of adipose-derived stem cells promoted by quercetin. Cell Prolif., vol. 47, p. 124-132. https://doi.org/10.1111/cpr.12097 DOI: https://doi.org/10.1111/cpr.12097
Zhang, Q., Zhao, X., H., Wang, Z. J. 2009. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (Kyse-510) by induction of G2/M arrest and apoptosis. Toxicol. In Vitro, vol. 23, p. 797-807. https://doi.org/10.1016/j.tiv.2009.04.007 DOI: https://doi.org/10.1016/j.tiv.2009.04.007
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.