Dependence among total polyphenols content, total antioxidant capacity and heavy metals content in potatoes

Authors

  • Janette Musilová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Judita Bystrická Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Beáta Volnová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Pavol Lednický Janette Musilova, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/532

Keywords:

potatoes, polyphenols, cultivar, antioxidant capacity, heavy metals

Abstract

Polyphenols belong to the most significant compounds with antioxidant effects in potatoes. Their content depends on several factors. The most important factor is the variety of potatoes and the conditions of their growing such as temperature, rainfall, altitude, agronomic and chemical characteristics of the soil. We have compared two potato cultivars in the study which have been grown in the Slovak localities Dolné Obdokovce and Vrbová nad Váhom (cv. Agria) and Nitra, Radošina and Vrbová nad Váhom (cv. Impala). In lyophilized samples of potatoes total polyphenols content in ethanolic extracts using Folin-Ciocalteu agens and in methanolic extracts total antioxidant capacity using DPPH were spectrophotometrically determined. The average total polyphenols content in the potato variety Impala was 604.26 ±120.70 mg.kg-1 dry matter (DM) and 529.37 ±59.35 mg.kg-1 DM in the variety Agria. The average value of total antioxidant capacity, expressed in % inhibition, was 8.44 ±1.68% in the potato variety Impala and 8.09 ±1.14% in Agria. The results obtained were evaluated by One-way analysis of variance ANOVA (LSD-test), using Statistical Analysis Software Statgraphics. Mutual correlations among the total polyphenols content, total antioxidant capacity and heavy metals concent (Pb, Ni, Cd - determined using atomic absorption spectrometry (AAS) method: Cd, Pb: GF-AAS and Ni F-AAS) were evaluated using the correlation and regression analysis (Microsoft Excel). Statistically significant interdependence (p <0.05) was only confirmed between the Cd content and total antioxidant capacity in both cultivars, or between the Ni content and total antioxidant capacity in the variety Impala.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al-Weshahy, A., El-Nokety, M., Bakhete, M., Rao, V. 2013. Effect of storage on antioxidant activity of freeze-dried potato peels. Food Research International, vol. 50, p. 507-512. https://doi.org/10.1016/j.foodres.2010.12.014 DOI: https://doi.org/10.1016/j.foodres.2010.12.014

Ali, M. H. H., Al-Qahtani, K. M. 2012. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egyptian Journal of Aquatic Research, vol. 38, p. 31-37. https://doi.org/10.1016/j.ejar.2012.08.002 DOI: https://doi.org/10.1016/j.ejar.2012.08.002

Albishi, T., John, J. A., Al-Khalifa, A. S., Shahidi, F. 2013. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Food, vol. 5, no. 2, p. 590-600. https://doi.org/10.1016/j.jff.2012.11.019 DOI: https://doi.org/10.1016/j.jff.2012.11.019

André, C. M., Oufir, M., Hoffmann, L., Hausman, J. F., Rogez, H., Larondelle, Y., Evers, D. 2009. Influence of enviroment and genotype on polyphenol compounds and in vitro antioxidant capacity of native Andean potatoes (Solanum tuberosum L). Journal of Food Composition and Analysis, vol. 22, p. 517-524. https://doi.org/10.1016/j.jfca.2008.11.010 DOI: https://doi.org/10.1016/j.jfca.2008.11.010

Bassama, J., Brat, P., Bohuon, P., Boulanger, R., & Günata, Z. 2010. Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chemistry, vol. 123, no. 2, p. 558-562. https://doi.org/10.1016/j.foodchem.2010.04.071 DOI: https://doi.org/10.1016/j.foodchem.2010.04.071

Bielek, P. 1996. Soil protection. Code of Good Agricultural Practice in Slovak Republic. VÚPÚ : Bratislava. [in Slovak]

Bončíková, D., Tóth, T., Tomáš, J., Suleiman, D., Tóth, J., Slávik, M. 2012. Effective antioxidant phenolic compounds in selected varieties of apples. Potravinarstvo, vol. 6, p. 11-15. https://doi.org/10.5219/222 DOI: https://doi.org/10.5219/222

Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. - Wiss. Technol., vol. 28, no. 1, p. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Brat, P., Georgé, S., Bellamy, A., Du Chaffaut, L., Scalbert, A., Mennen, L., Arnault, N., Amiot, M. J. 2006. Daily Polyphenol Intake in France from Fruit and Vegetables. The Journal of Nutrition, vol. 136, p. 2368-2373. DOI: https://doi.org/10.1093/jn/136.9.2368

Burgos, G., Amoros, W., Munoa, L., Sosa, P., Cayhualla, E., Sachez, C., Diaz, C., Bonierbale, M. 2013. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. Journal of Food Composition and Analysis, vol. 30, p. 6-12. https://doi.org/10.1016/j.jfca.2012.12.001 DOI: https://doi.org/10.1016/j.jfca.2012.12.001

Chen, Y., Wang, C., Wang, Z. 2005. Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environment International, vol. 31, p. 778-783. https://doi.org/10.1016/j.envint.2005.05.024 DOI: https://doi.org/10.1016/j.envint.2005.05.024

Chen, X., Wang, K., Wang, Z., Gan, C., He, P., Liang, Y., Jin, T., Zhu, G. 2014. Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population. Bone, vol. 63, p. 76-80. https://doi.org/10.1016/j.bone.2014.02.017 DOI: https://doi.org/10.1016/j.bone.2014.02.017

Deußer, H., Guignard, C., Hoffmann, L., Evers, D. 2012. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chemistry, vol. 135, no. 4, p. 2814-2824. https://doi.org/10.1016/j.foodchem.2012.07.028 DOI: https://doi.org/10.1016/j.foodchem.2012.07.028

EC No. 1881/2006. Commision Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. (OJ L 364, 20.12.2006, p. 5-24).

Ezekiel, R., Singh, N., Sharma, S., Kaur, A. 2013. Beneficial phytochemicals in potato - a review. Food Research International, vol. 50, p. 487-496. https://doi.org/10.1016/j.foodres.2011.04.025 DOI: https://doi.org/10.1016/j.foodres.2011.04.025

Faller, A. L. K., Fialho, E. 2009. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Research International, vol. 42, p. 210-215. https://doi.org/10.1016/j.foodres.2008.10.009 DOI: https://doi.org/10.1016/j.foodres.2008.10.009

FC SR. Foodstuffs Codex of Slovak Republic, [cit. 2015-09-30] Available at: http://www.potravinarstvo.com/pksr/2cast_pksr/10_hlava_kontaminanty_v_potravinach/2004_608%20%203.pdf

FAOSTAT. 2012. http://faostat.fao.org/site/339/default.aspx.

Fu, F., Wang, Q. 2011. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, vol. 92, p. 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011 DOI: https://doi.org/10.1016/j.jenvman.2010.11.011

Galdón, B. R., Rodríguez, L. H., Mesa, D. R., León, H. L., Pérez, N. L., Rodríguez, E. M., Romero, C. D. 2012. Differentiation of potato cultivars experimentally cultivated based on their chemical composition and by applying linear discriminant analysis. Food Chemistry, vol. 133, no. 4, p. 1241-1248, ISSN 0308-8146. https://doi.org/10.1016/j.foodchem.2011.10.016 DOI: https://doi.org/10.1016/j.foodchem.2011.10.016

Gonçalves, J. F., Nicoloso, F. T., da Costa, P., Farias, J. G., Carvalho, F. B., da Rosa, M. M., Gutierres, J. G., Abdalla, F. H., Pereira, J. S. F., Dias, G. R. M., Barbosa, N. B. V., Dressler, V. L., Rubin, M. A., Morsch, V. M., Schetinger, M. R. C. 2012. Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food and Chemical Toxicology, vol. 50, p. 3709-3718. https://doi.org/10.1016/j.fct.2012.07.016 DOI: https://doi.org/10.1016/j.fct.2012.07.016

Harangozo, Ľ., Stanovič, R., Árvay, J., Trebichalský, P. 2012. The cadmium intake of selected legumes in model conditions. Potravinarstvo, vol. 6, p. 20-23. https://doi.org/10.5219/221 DOI: https://doi.org/10.5219/221

Hegedűsová, A., Mezeyová, I., Timoracká, M., Šlosár, M., Musilová, J., Juríková, T. 2015. Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties. Potravinarstvo, vol. 9, p. 1-8. https://doi.org/10.5219/412 DOI: https://doi.org/10.5219/412

Lachman, J., Hamouz, K., Čepl, J., Pivec, V., Šulc, M., Dvořák, P. 2006. Vliv vybraných faktorů na obsah polyfenolů a antioxidační aktivitu hlíz brambor (The Effect of Selected Factors on Polyphenol Content and Antioxidant Activity in Potato Tubers). Chemické listy, vol. 100, p. 522-527. [cit. 2015-09-30] Available at: http://chemicke-listy.cz/docs/full/2006_07_522-527.pdf

Lachman, J., Hamouz, K., Orsák, M., Pivec, V., Dvořák, P. 2008. The influence of flesh colour and growing locality on polyphenolic content and antioxidant activity in potatoes. Scientia Horticulturae, vol. 117, p. 109-114. https://doi.org/10.1016/j.scienta.2008.03.030 DOI: https://doi.org/10.1016/j.scienta.2008.03.030

Lachman, J., Hamouz, K., Orsák, M., Pivec, V., Hejtmánková, K., Pazderů, K., Dvořák, P., Čepl, J. 2012. Impact of selected factors - Cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chemistry, vol. 133, p. 1107-1116. https://doi.org/10.1016/j.foodchem.2011.07.077 DOI: https://doi.org/10.1016/j.foodchem.2011.07.077

Law (Slovak decree) no. 220/2004 Coll. on the protection and exploitation of agriculture land. [cit. 2015-09-30] Available at: http://www.lecol.sk/images/stories/lecol/220_2004.pdf

Liu, Y., Wang, P., Chen, F., Yuan, Y., Zhu, Y., Yan, H., Hu, X. 2015. Role of plant polyphenols in acrylamide formation and elimination. Food Chemistry, vol. 186, p. 46-53. https://doi.org/10.1016/j.foodchem.2015.03.122 DOI: https://doi.org/10.1016/j.foodchem.2015.03.122

Marchettini, N., Focardi, S., Guarnieri, M., Guerranti, C., Perra, G. 2013. Determination of acrylamide in local and commercial cultivar of potatoes from biological farm. Food Chemistry, vol. 136, p. 1426-1428. https://doi.org/10.1016/j.foodchem.2012.09.077 DOI: https://doi.org/10.1016/j.foodchem.2012.09.077

Minh, N. D., Hough, R. L., Thuy, L. T., Nyberg, Y., Mai, L. B., Vinh, N. C., Khaim, N. M., Öborn, I. 2012. Assessing dietary exposure to cadmium in a metal recycling community in Vietnam: Age and gender aspects. Science of the Total Environment, vol. 416, p. 164-171. https://doi.org/10.1016/j.scitotenv.2011.11.068 DOI: https://doi.org/10.1016/j.scitotenv.2011.11.068

Musilova, J., Bystricka, J., Volnova, B., Hegedűsova, A., Vesely, M., Heldak, J. 2015. Changes in the antioxidant capacityof potatoes depending on the cultivar, contents of polyphenols, chlorogenic acid and ascorbic acid. Journal of Microbiology, Biotechnology and Food Sciences, vol. 4 (special issue 3), p. 125-129. https://doi.org/10.15414/jmbfs.2015.4.special3.125-129 DOI: https://doi.org/10.15414/jmbfs.2015.4.special3.125-129

Ogunbileje, J. O., Sadagoparamanujam, V.-M., Anetor, J. I., Farombi, E. O., Akinosun, O. M., Okorodudu, A. O. 2013. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust. Chemosphere, vol. 90, p. 2743-2749. https://doi.org/10.1016/j.chemosphere.2012.11.058 DOI: https://doi.org/10.1016/j.chemosphere.2012.11.058

Reddivari, L., Hale, A. L., Miller, J. C. Jr. 2007. Genotype, Location, and Year Influence Antioxidant Activity, Carotenoid Content, Phenolic Content, and Composition in Specialy Potatoes. Journal of Agricultural and Food Chemistry, vol. 55, no. 20, p. 8073-8079. https://doi.org/10.1021/jf071543w PMid: 17760413 DOI: https://doi.org/10.1021/jf071543w

Reyes, L. F., Miller Jr., J. C., Cisneros-Zevallos, L. 2005. Antioxidant Capacity, Anthocyanins and Total Phenolics in Purpleand Red-Fleshed Potato (Solanum tuberosum L.) Genotypes. American Journal of Potato Research, vol. 82, p. 271-277. https://doi.org/10.1007/bf02871956 DOI: https://doi.org/10.1007/BF02871956

Rumbaoa, R. G. O., Cornago, D. F., Geronimo, I. M. 2009. Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, vol. 22, p. 546-550. https://doi.org/10.1016/j.jfca.2008.11.004 DOI: https://doi.org/10.1016/j.jfca.2008.11.004

Rytel, E., Tajner-Czopek, A., Kita, A., Aniołowska, M., Kucharska, A. Z., Sokół-Łętowska, A., Hamouz, K. 2014. Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Food Chemistry, vol. 161, p. 224-229. https://doi.org/10.1016/j.foodchem.2014.04.002 DOI: https://doi.org/10.1016/j.foodchem.2014.04.002

Talukdar, D. 2013. In Vitro Antioxidant Potential and Type II Diabetes Related Enzyme Inhibition Properties of Traditionally Processed Legume-based Food and Medicinal Recipes in Indian Himalayas. Journal of Applied Pharmaceutical Science, vol. 3, p. 26-32. https://doi.org/10.7324/JAPS.2013.30106 DOI: https://doi.org/10.7324/JAPS.2013.30106

Tresserra-Rimbau, A., Medina-Remíon, A., Pérez-Jiménez, J., Martínez-González, M. A., Covas, Mi. I., Corella, D., Salas-Salvadío, J., Gíomez-Gracia, E., Lapetra, J., Aríos, F., Fiol, M., Ros, E., Serra-Majem, L., Pintío, X., Muñoz, M. A., Saez, G. T., Ruiz-Gutiérrez, V., Warnberg, J., Estruch, R., Lamuela-Raventíos, R. M. 2013. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study. Nutrition, Metabolism & Cardiovascular Diseases, vol. 23, p. 953-959. https://doi.org/10.1016/j.numecd.2012.10.008 DOI: https://doi.org/10.1016/j.numecd.2012.10.008

Vokál, B., Čepl, J., Hausvater, E., Rasocha, V. 2000. Pěstujeme brambory. (We cultivate potatoes). Grada Publishing. 2003. 112 p. [in Czech] ISBN 80-247-0567-2.

Xi, L., Mu, T., Sun, H. 2015. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chemistry, vol. 172, p. 166-174. https://doi.org/10.1016/j.foodchem.2014.09.039 DOI: https://doi.org/10.1016/j.foodchem.2014.09.039

Xu, D., Chen, Z., Sun, K., Yan, D., Kang, M., Zhao, Y. 2013. Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.). Ecotoxicology and Environmental Safety, vol. 97, p. 147-153. https://doi.org/10.1016/j.ecoenv.2013.07.021 DOI: https://doi.org/10.1016/j.ecoenv.2013.07.021

Zhang, W. L., Du, Y., Zhai, M. M., Shang, Q. 2014. Cadmium exposure and its health effects: A 19-year follow-up study of a polluted area in China. Science of the Total Environment, vol. 470-471, p. 224-228. https://doi.org/10.1016/j.scitotenv.2013.09.070 DOI: https://doi.org/10.1016/j.scitotenv.2013.09.070

Zheljazkov, V. D., Jeliazkova, E. A., Kovacheva, N., Dzhurmanski, A. 2008. Metal uptake by medicinal plant species grown in soils contaminated by a smelter. Environmental and Experimental Botany, vol. 64, p. 207-216. https://doi.org/10.1016/j.envexpbot.2008.07.003 DOI: https://doi.org/10.1016/j.envexpbot.2008.07.003

Downloads

Published

2015-12-13

How to Cite

Musilová, J. ., Bystrická, J. ., Volnová, B. ., & Lednický, P. . (2015). Dependence among total polyphenols content, total antioxidant capacity and heavy metals content in potatoes. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 515–522. https://doi.org/10.5219/532

Most read articles by the same author(s)

1 2 3 > >>