Colonization of grapes berries and cider by potential producers of patulin
DOI:
https://doi.org/10.5219/460Keywords:
grapes, patulin, Penicillium, Aspergillus, mycotoxinAbstract
The aim of this study was to detect potential producers of mycotoxin patulin from grapes (berries, surface sterilized berries - endogenous mycobiota and grape juice) of Slovak origin. We analyzed 47 samples of grapes, harvested in 2011, 2012 and 2013 from various wine-growing regions. For the isolation of species we used the method of direct plating berries and surface-sterilized berries (using 1% freshly pre-pared chlorine) berries on DRBC (Dichloran Rose Bengal Chloramphenicol agar). For the determination of fungal contamination of grape juice we used plate-dilution method and DRBC and DG18 (Dichloran 18% Glycerol agar) as media. The cultivation in all modes of inoculation was carried at 25 ±1 °C, for 5 to 7 days. After incubation Aspergillus and Pencillium isolates were inoculated on the identification media. The potential producers of patulin were isolated from 23 samples berries, 19 samples of surface-sterilized berries and 6 samples of grape juice. Overall, the representatives of producers of patulin were detected in 32 (68.1%) samples (75 isolates). In this work we focused on the detection of potential producers of patulin, Penicillium expansum (the most important producer of patulin in fruits), Penicillium griseofulvum and Aspergillus clavatus were isolated. Chosen isolates of potential patulin producers were tested for the ability to produce relevant mycotoxins in in vitro conditions using thin layer chromatography method. The ability to produce patulin in in vitro condition was detected in 82% of isolates of Penicillium expansum, 65% of Penicillium griseofuvum and 100% of Aspergillus clavatus. Some isolates of Penicillium expansum were able to produce citrinin and roquefortine C, Penicillium griseofulvum cyclopiazonic acid, griseofulvin and roquefortin C, also.
Downloads
Metrics
References
Andersen, B., Smedsgaard, J., Frisvad, J. 2004. Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry, vol. 52, no. 8, p. 2421-2428. https://doi.org/10.1021/jf035406k DOI: https://doi.org/10.1021/jf035406k
Barkai-Golan, R. 2008. Penicillium Mycotoxins. In Barkai-Golan, R., Paster, N. Mycotoxins in Fruits and Vegetables. USA: Elsevier, p 153-183. ISBN 978-0-12-374126-4. https://doi.org/10.1007/978-3-662-04464-3 DOI: https://doi.org/10.1016/B978-0-12-374126-4.00007-3
Bennett, J. W., Klich, M. 2003. Mycotoxins. Clinical Microbiology Reviews, vol. 16, no. 3, p. 497-516. https://doi.org/10.1128/cmr.16.3.497-516.2003 DOI: https://doi.org/10.1128/CMR.16.3.497-516.2003
Bragulat, M. R., Abarca, M. L., Cabañes, F. J. 2008. Low occurrence of patulin- and citrinin-producing species isolated from grapes. Letters in Applied Microbiology, vol. 47, no. 4, p. 286-289. PMid:19241521 DOI: https://doi.org/10.1111/j.1472-765X.2008.02422.x
Bünger, J., Westphal, G., Mönnich, A., Hinnendahl, B., Hallier, E., Müller, M. 2004. Cytotoxicity of occupationally and environmentally relevant mycotoxins. Toxicology, vol., 202, no. 3, p. 199-211. https://doi.org/10.1016/j.tox.2004.05.007 DOI: https://doi.org/10.1016/j.tox.2004.05.007
Burdock, G. A., Flamm, W. G. 2000. Review article: Safety assessment of the mycotoxin cyclopiazonic acid (Review). Internation Jounal of Toxicology, vol. 19, no. 3, p. 195-218. https://doi.org/10.1080/10915810050074964 DOI: https://doi.org/10.1080/10915810050074964
Cole, R. J., Cox, R. H. 1981. Hanbook of toxic fungal metabolites. New York: Academic Press, p. 527-568. https://doi.org/10.1016/b978-0-12-179760-7.50014-0 DOI: https://doi.org/10.1016/B978-0-12-179760-7.50015-2
De Carli L., Larizza L. 1988. Griseofulvin. Mutation Research/Reviews in Genetic Toxicology, vol. 195, no. 2, p. 91-126. https://doi.org/10.1016/0165-1110(88)90020-6 DOI: https://doi.org/10.1016/0165-1110(88)90020-6
Dombrink-Kurtzman, M. A., Engberg, A. E. 2006. Byssochlamys nivea with patulin-producing capability has an isoepoxydon dehydrogenase gene (idh) with sequence homology to Penicillium expansum and Penicillium griseofulvum. Mycological Research, vol. 110, no. 9,
p. 1111-1118. https://doi.org/10.1016/j.mycres.2006.05.008 DOI: https://doi.org/10.1016/j.mycres.2006.05.008
Elhariry, H., Bahobial, A., A., Cherbawy, Y. 2011. Genotypic identification of Penicillium expansum and the role of processing on patulin presence in juice. Food and Chemical Toxicology, vol. 49, no. 4, p. 941-946. https://doi.org/10.1016/j.fct.2010.12.018 DOI: https://doi.org/10.1016/j.fct.2010.12.018
Frisvad, J. C., Thrane, U., Samson, R. A., Pitt, J. I. 2006. Important mycotoxins and the fungi which produce them. In Hocking, A. D. et al. Advances in Experimental Medicine and Biology, USA : Springer Science + Business Media, p. 3-31. https://doi.org/10.1007/0-387-28391-9_1 DOI: https://doi.org/10.1007/0-387-28391-9_1
Frisvad, J. C., Andersen, B., Samson, R. A. 2007a. Association of moulds to foods. In Dijksterhuis, J., Samson, R. A. Food Mycology a Multifaceted Approach to Fungi and Food. Boca Raton: CRC Press, p. 199-239. ISBN 0-8493-9818-5 DOI: https://doi.org/10.1201/9781420020984.ch11
Franck, J., Latorre, B. A., Torres, R., Zoffoli, J. P. 2005. The effect of preharvest fungicide and postharvest sulphur dioxide use on postharvest decay of table grapes caused by Penicillium expansum. Potharvest Biology and Technology, vol. 37, no. 1, p. 20-30. https://doi.org/10.1016/j.postharvbio.2005.02.011 DOI: https://doi.org/10.1016/j.postharvbio.2005.02.011
Frisvad, J. C., Thrane, U., Samson, R. A. 2007b. Mycotoxin producers. In Dijksterhuis, J., Samson, R. A. Food Mycology a Multifaceted Approach to Fungi and Food. Boca Raton : CRC Press, p. 135-159. ISBN 0-8493-9818-5 DOI: https://doi.org/10.1201/9781420020984.ch8
Gonzáles, H. H. L., Pacin, A., Resnik, S. L., Martinez, E. J. 1996. Deoxynivalenol and contaminant mycoflora in freshly harvested Argentinean wheat in 1993. Mycopathologia, vol. 135, no. 2, p. 129-134. https://doi.org/10.1007/bf00436463 DOI: https://doi.org/10.1007/BF00436463
Gautam, A., Sharma, S., Bhadauria, R. 2009. Detection of toxigenic fungi and mycotoxins in medicinally important powdered herbal drugs. The Internet Journal of Microbiology, vol. 7, no. 2. [cit. 2015-03-02] Available at: https://doi.org/10.5580/104b DOI: https://doi.org/10.5580/104b
Klich, M. A. 2002. Identification of common Aspergillus species. Wageningen: Ponsen & Looijen, 116 p. ISBN 90-70351-46-3. https://doi.org/10.1017/s0269915x03243123 DOI: https://doi.org/10.1017/S0269915X03243123
Labuda, R., Tančinová, D. 2006. Fungi recovered from slovakian poultry feed mixtures and their toxinogenity. Annals of Agricultural and Environmental Medicine, vol. 13, p. 193-200.
Marin, S., Ramos, A. J., Cano-Sancho, G., Sanchis, V. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, vol. 60, p. 218-237. https://doi.org/10.1016/j.fct.2013.07.047 DOI: https://doi.org/10.1016/j.fct.2013.07.047
Moake, M. M., Padila-Zakour, O. L., Worobo, R. W. 2005. Comprehensive review of patulin control methods in food. Comprehensive Review in Food Science and Food Safety, vol. 4, no. 1, p. 8-21. https://doi.org/10.1111/j.1541-4337.2005.tb00068.x DOI: https://doi.org/10.1111/j.1541-4337.2005.tb00068.x
Morales, H., Sanchis, V., Rovira, A., Ramos, A. J., Marin, S. 2007. Patulin accumulation in apples during postharvest: effect of controlled atmosphere storage and fungicide treatments. Food Control, vol. 18, no. 11, p. 1443-1448. https://doi.org/10.1016/j.foodcont.2006.10.008 DOI: https://doi.org/10.1016/j.foodcont.2006.10.008
Neri, F., Donati, I., Veronesi, F., Mazzoni, D., Mari, M. 2010. Evaluation of Penicillium expansum isolates for aggressiveness, growth and patulin accumulation in usual and less common fruit hosts. Internationa Journal of Food Microbiology, vol 143, no. 3, p. 109-117. https://doi.org/10.1016/j.ijfoodmicro.2010.08.002 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.08.002
Pitt, J. I., Hocking, A.D. 2009. Fungi and food spoilage. 3rd ed. London, New York: Springer Science + Business Media, LLC 2009, 519 p. ISBN 978 0-387-92206-5. https://doi.org/10.1016/j.ijfoodmicro.2010.08.005 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.08.005
Puel, O., Galtier, P., Oswald, I.P. 2010. Biosynthesis and toxicological effects of patulin. Toxins, vol. 2, no. 4., p. 613-631. https://doi.org/10.3390/toxins2040613 DOI: https://doi.org/10.3390/toxins2040613
Samson, R .A., Frisvad, J. C. 2004. Polyphasic taxonomy of Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. In Studies in Mycology 49, Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures, 2004, 260 p. ISBN 90-70351-53-6.
Samson, R. A., Van Reenen-Hoekstra, E. S, Frisvad, J. C., Filtenborg, O. 2002. Introduction to food-borne fungi. Utrecht: Centraalbureau voor Schimmelcultures, 389 p. ISBN 90-70351-42-0.
Samson, R. A., Houbraken, U., Thrane, U., Frisvad, J. C., Andersen, B. 2010. Food and Indoor Fungi. Utrecht : CBS-KNAW Fungal Biodiversity Centre, 390 p. ISBN 978-90-70351-82-3.
Samson, R. A., Varga, J. eds. 2007. Aspergillus systematics in the genomic era. Studies in Mycology, 59, Utrecht: CBS Fungal Biodiversity Centre, 206 p. ISBN 978-90-70351-69-4.
Saxena, N., Ansari, K. M., Kumar, R., Dhawan, A., Dwivedi, P. D., Das, M. 2009. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p 21/WAF1 proteins in skin of mice. Toxicology and Applied Pharmacology, vol. 234, no. 2, p. 192-201. https://doi.org/10.1016/j.taap.2008.09.033 DOI: https://doi.org/10.1016/j.taap.2008.09.033
Serra, R., Braga, A., Venâncio, A. 2005. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Research in Microbiology, vol. 156, no. 4, p. 515-521. https://doi.org/10.1016/j.resmic.2004.12.005 DOI: https://doi.org/10.1016/j.resmic.2004.12.005
Serra, R., Lourenço, A., Alípio, P., Venâncio, A. 2006. Influence of the region on the mycotiota of grapes with emphansis on Aspergillus and Penicillium species. Mycological Research, vol. 110, no. 8, p. 971-978. https://doi.org/10.1016/j.mycres.2006.05.010 DOI: https://doi.org/10.1016/j.mycres.2006.05.010
Sirot, V., Fremy, J. M., Leblanc, J. C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food and Chemical Toxicology, vol. 52, p. 1-11. https://doi.org/10.1016/j.fct.2012.10.036 DOI: https://doi.org/10.1016/j.fct.2012.10.036
Weidenbörner, M. 2001. Encyclopedia of Food Mycotoxins. Springer Science + Business Media, 294 p. ISBN 3-540-67556-6. https://doi.org/10.1007/978-3-662-04464-3 DOI: https://doi.org/10.1007/978-3-662-04464-3
Zaied, C., Zouaoui, N., Bacha, H., Abid, S. 2012. Natural occurrence of citrinin in Tunisian wheat grains. Food Control, vol. 28, no. 1, p. 106-109. https://doi.org/10.1016/j.foodcont.2012.04.015 DOI: https://doi.org/10.1016/j.foodcont.2012.04.015
Zouaoui, N., Sbaii, N., Bacha, H., Abid-Essefi, S. 2015. Occurrence of patulin in various fruit juice marketed in Tunisia. Food Control, vol. 51, p. 356-360. https://doi.org/10.1016/j.foodcont.2014.09.048 DOI: https://doi.org/10.1016/j.foodcont.2014.09.048
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.