Occurrence and antimicrobial resistance of Staphylococcus aureus in bulk tank milk and milk filters

Authors

  • Kateřina Bogdanovičová University of Veterinary and Pharmaceutical Sciences Brno, Department of Milk Hygiene and Technology, Palackého tř. 1/3, 612 42, Brno, Czech Republic
  • Alena Skočková University of Veterinary and Pharmaceutical Sciences Brno, Department of Milk Hygiene and Technology, Palackého tř. 1/3, 612 42, Brno, Czech Republic
  • Zora Šťástková University of Veterinary and Pharmaceutical Sciences Brno, Department of Milk Hygiene and Technology, Palackého tř. 1/3, 612 42, Brno, Czech Republic
  • Renáta Karpí­šková University of Veterinary and Pharmaceutical Sciences Brno, Department of Milk Hygiene and Technology, Palackého tř. 1/3, 612 42, Brno, Czech Republic Veterinary Research Institute, Hudcova 70,, 621 00 Brno, Czech Republic

DOI:

https://doi.org/10.5219/363

Keywords:

mecA gene, MRSA, PCR, antibiotic resistance, disk diffusion method

Abstract

This work is focused on the monitoring of Staphylococcus aureus prevalence in raw milk and milk filters, its antibiotic resistance and detection of methicillin resistant Staphylococcus aureus (MRSA). Samples of raw cow´s milk and milk filters were collected in the period from 2012 till 2014, from 50 dairy farms in the Czech Republic. The total of 261 samples (164 samples of raw milk and 97 milk filters) were cultivated on Baird-Parker agar. Both the typical and atypical colonies were examined by plasmacoagulase test and PCR method was used for detection of species specific fragment SA442 and mecA gene. Standard disk diffusion method was used to determinate resistance to antimicrobial agents. The bacterium Staphylococcus aureus was detected on 25 farms (50%). The antimicrobial resistance showed differences between the farms. Total of 58 samples were positive for Staphylococcus aureus, of which were 37 (14.2%) isolated from raw milk samples and 21 (8.1%) from milk filters. From these samples we isolated 62 Staphylococcus aureus strains, 41 isolates bacteria S. aureus from raw milk (66.1%) and 21 isolates S. aureus from milk filters (33.9%). The presence of antibiotic resistance in Staphylococcus aureus isolates was low, most of them were resistant to amoxicilin. According to the results obtained by the PCR method for the methicillin - resistant S. aureus (MRSA), the mecA gene was present in 6 strains (9.7%), 4 isolates obtained from milk samples (6.5%) and 2 isolates from milk filters (3.2%).  These isolates can be considered as a possible source of resistance genes, which can be spread through the food chain. Nowadays, a globally unfavourable increasing trend of prevalence of methicillin resistant staphylococci strains especially Staphylococcus aureus is being observed worldwide. The improper hygiene and poor farm management practices contributed to the presence of S. aureus in the milk. This may have contributed to the high level of S. aureus isolated. Improving the hygienic conditions of the milking environment and utensils may reduce the prevalence of S. aureus in milk. Objective of this study was monitoring of Staphylococcus aureus prevalence and determine the prevalence rate of antimicrobial resistance of S. aureus isolated from raw milk and milk filters in the Czech Republic.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Brouillette, E., Malouin, F. 2005. The pathogenesis and control of Staphylococcus aureus-induced mastitis: Study models in the mouse. Microbes Infect. vol. 7, no. 3, p. 560-568. https://doi.org/10.1016/j.micinf.2004.11.008 PMid:15777742 DOI: https://doi.org/10.1016/j.micinf.2004.11.008

Boşgelmez-Tınaz, G., Ulusoy, S., Arıdoğan, B., Coşkun-Arı, F. 2006. Evalution of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. European Journal of Clinical Microbiology & Infectious Diseases. vol. 25, no. 6,

p. 410-412. https://doi.org/10.1007/s10096-006-0153-8 PMid:16767493 DOI: https://doi.org/10.1007/s10096-006-0153-8

Cretenet, M., Even, S., Le Loir, Y. 2011. Unveiling Staphylococcus aureus enterotoxin production in dairy products: a review of recent advances to face new challenges. Dairy Science Technology. vol. 91, no. 2, p. 127-150. https://doi.org/10.1007/s13594-011-0014-9 DOI: https://doi.org/10.1007/s13594-011-0014-9

Čížek, A., Dolejská, M., Brychta, J., Bardoň, J., Haas, D. Bednář, V., Hlaváček, J., Smola, J. 2008. Využití mléčných filtrů ke sledování výskytu původců alimentárních onemocnění člověka a indikátorových bakterií rezistentních k antimikrobiálním látkám na mléčných farmách. Veterinářství. vol. 4, p. 250-256.

David, M. Z, Daum, R. S. 2010. Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. Clinical Microbiology Reviews. vol. 23, no. 3, p. 616-687 https://doi.org/10.1128/CMR.00081-09 PMid:20610826 DOI: https://doi.org/10.1128/CMR.00081-09

Goñi, P., Vergara, Y., Rui, J., Albizu, I., Vila, J., Gómez-Lus, R. 2004. Antibiotic resistance and epidemiological typing of Staphylococcus aureus strains from ovine and rabbit mastitis. International Journal of Antimicrobial Agents., vol. 23, no. 3, p. 268-272. https://doi.org/10.1016/j.ijantimicag.2003.07.016 PMid:15164968 DOI: https://doi.org/10.1016/j.ijantimicag.2003.07.016

Gündoğan, N., Citak, S., Yucel, N., Devren, A. 2005. A note on the incidence and antibiotic resistance of Staphylococcus aureus isolated from meat and chicken samples. Meat Science. vol. 69, no. 4, p. 807-810. https://doi.org/10.1016/j.meatsci.2004.10.011 PMid:22063160 DOI: https://doi.org/10.1016/j.meatsci.2004.10.011

Gündoğan, N., Citak, S., Turan, E. 2006. Slime production, DNase activity and antibiotic resistance of Staphylococcus aureus isolated from raw milk, pasteurised milk and ice cream samples. Food Control. vol. 17, no. 5, p. 389-392. https://doi.org/10.1016/j.foodcont.2005.01.006 DOI: https://doi.org/10.1016/j.foodcont.2005.01.006

Gran, H. M., Wetlesen, A., Mutukumira, A. N., Rukure, G., Narvhus, J. A. 2003. Occurrence of pathogenic bacteria in raw milk cultured pasteurised milk and naturally soured milk produced at small-scale dairies in Zimbabwe. Food Control, vol. 14, no. 8, p. 539-544. https://doi.org/10.1016/S0956-7135(02)00117-2 DOI: https://doi.org/10.1016/S0956-7135(02)00117-2

Ibrahem, S., Salmenlinna, S., Kerttula, A. M., Virolainen-Julkunen, A., Kuusela, P., Vuopio-Varkila, J. 2005. Comparsion of genotypes of methicillin-resistant and methicillin-sensitive Staphylococcus aureus in Finland. European Journal of Clinical Microbiology & Infectious Diseases., vol. 24, p. 325-328. https://doi.org/10.1007/s10096-005-1328-4 PMid:15891917 DOI: https://doi.org/10.1007/s10096-005-1328-4

Ito, T., Okuma, K., Ma, X. X., Yuzawa, H., Hiramatsu, K. 2003. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: Genomic island SCC. Drug Resistance Updates. vol. 6, no. 1, p. 41-52. https://doi.org/10.1016/S1368-7646(03)00003-7 PMid:12654286 DOI: https://doi.org/10.1016/S1368-7646(03)00003-7

Kalsoom, F., Syed, N. H. S., Farsana, J. 2004. Antibiotic resistance pattern against various isolates of Staphylococcus aureus from raw milk samples. Journal of Research Sciences. vol. 15, p. 145-151. [cit. 2014-02-07]. Retrieved from the web: http://www.bzu.edu.pk/jrscience/vol15no2/4.pdf

Karpíšková, R., Koláčková, I., Vyletělová, M., Janštová, B. 2011. ,,Mléčné automaty"-nálezy původců alimentárních onemocnění v syrovém mléce. SZÚ, PRAHA: ZPRÁVY CEM, vol. 20, p. 212-214.

Karpíšková, R., Šťástková, Z., Karpíšková, S. 2009. Nálezy meticilin rezistentních Staphylococcus aureus u zvířat. Veterinářství. vol. 1, p. 34-38.

Karpíšková, S., Šťástková, Z., Karpíšková, R. 2008. . Nález meticilin rezistentních Staphylococcus aureus u potravinových zvířat v ČR. Sborník abstraktů. XV. Konference mladých mikrobiologů, Tomáškovy dny. Brno, p. 20-21.

Larsen, H. D., Sloth, K. H., Elsberg, C. Enevoldsen, C., Pedersen, L. H. , Eriksen, N. H. R., Aarestrup, F. M., Jensen, N. E. 2000. The dynamics of Staphylococcus aureus intramammary infections in nine Danish dairy herds. Veterinary Microbiology. vol. 71, no. 1-2, p. 89-101. https://doi.org/10.1016/S0378-1135(99)00161-3 PMid:10665537 DOI: https://doi.org/10.1016/S0378-1135(99)00161-3

Latorre, A. A, Van Kessel, Jo A. S., Karns, J. S., Zurakowski, M. J., Pradhan, A. K., Zadoks, R. N., Boor, K. J., Schukken, Y. H. 2009. Molecular ecology of Listeria monocytogenes on a dairy farm: evidence for a reservoir in milking equipment on a dairy farm. Applied and Environmental Microbiology. vol. 75, no. 5, p. 1315-1323. https://doi.org/10.1128/AEM.01826-08 PMid:19114514 DOI: https://doi.org/10.1128/AEM.01826-08

Lee, J. H. 2003. Methicillin (oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Applied and Enviromental Microbiology. vol. 69, no. 11,

p. 6489-6494. https://doi.org/10.1128/AEM.69.11.6489-6494.2003 PMid:14602604 DOI: https://doi.org/10.1128/AEM.69.11.6489-6494.2003

Lee Loir, Y., Baron, F., Gautier, M. 2003. Staphylococcus aureus and food poisoning. Genetics and Molecular Research. vol. 2, no. 1, p. 63-76. PMid:12917803

Martineau, F, Picard, F. J., Roy, P. H., Ouellette, M., Bergeron, M. G. 1998. Species-Specific and Ubiquitous DNA-Based Assays for Rapid Identification of Staphylococcus aureus. Journal of Clinical Microbiology. vol. 36, no. 3, p. 618-623. PMid:9508283 DOI: https://doi.org/10.1128/JCM.36.3.618-623.1998

McCallum, N., Berger-Bachi, B., Senn, M. M. 2010 Regulation of antibiotic resistance in Staphylococcus aureus. International Journal of Medical Microbiology. vol. 300, no. 2-3, p. 118-129. https://doi.org/10.1016/j.ijmm.2009.08.015 DOI: https://doi.org/10.1016/j.ijmm.2009.08.015

Rabello, R. F., Moreira, B. M., Lopes, R. M., Teixeira, L. M, Riley, L.W., Castro, A. C. 2007. Multilocus sequence typing of Staphylococcus aureus isolates recovered from cows with mastitis in Brazilian dairy herds. Journal of Medical Microbiology. vol. 56, no. 11, p. 1505-1511. https://doi.org/10.1099/jmm.0.47357-0 PMid:17965353 DOI: https://doi.org/10.1099/jmm.0.47357-0

Rychlík, I., Gregorová, D., Hradecká, H. 2006. Distribution and function of plasmids in Salmonella Enterica. Veterinary Microbiology. vol. 112, no. 1, p. 1-10. https://doi.org/10.1016/j.vetmic.2005.10.030 PMid:16303262 DOI: https://doi.org/10.1016/j.vetmic.2005.10.030

USA. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard - Eleventh Edition. Wayne, PA, 2012a.

USA. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Wayne, PA, 2012b.

Downloads

Published

2014-04-29

How to Cite

Bogdanovičová, K. ., Skočková, A. ., Šťástková, Z. ., & Karpí­šková, R. . (2014). Occurrence and antimicrobial resistance of Staphylococcus aureus in bulk tank milk and milk filters. Potravinarstvo Slovak Journal of Food Sciences, 8(1), 97–101. https://doi.org/10.5219/363

Most read articles by the same author(s)