Substantiation of wild plants used as functional ingredients in the technology of crisp grain bread
DOI:
https://doi.org/10.5219/1998Keywords:
wild plants, extracts, concentrates, chemical composition, food safety, functional foodsAbstract
Research on the nutritional content of wild plant fruits in Kazakhstan, including Hawthorn fruit (Crataegus laevigata), rosehip fruit (Rose canina L. variety), sea buckthorn fruit (Hippophae rhamnoides - Altai variety), and black chokeberry fruit (Aronia melanocarpa), has determined that these fruits possess a combination of properties essential for maintaining human health, attributed to the presence of bioactive substances (BAS) and other components. The technological process for obtaining extracts and concentrates from wild-growing raw material fruit has developed. The following extraction modes were proposed: ultrasonic wave frequency 40 kHz, extraction time 30 minutes, temperature 500С, and concentration of the obtained extracts was carried out by vacuum evaporation method, using IKA RV-10 apparatus at 40-50°С and pressure 800 mbar. Found that extracts and concentrates have a higher concentration of nutritional substances when compared to the fruits themselves. Thus, the vitamin C content in hawthorn fruits was 27.8 mg, while in the extract, it was 47.84 mg, and in the concentrate – 62.19 mg. The vitamin C content in rosehip fruits, extracts, and concentrates was 578.01 mg, 811.8 mg, and 1101.3 mg, respectively. The vitamin C content in sea buckthorn fruits, extracts, and concentrates was 285.05 mg, 518.8 mg, and 640.9 mg, respectively. The vitamin C content in black chokeberry fruits, extracts, and concentrates was 86.2 mg, 128.8 mg, and 160.5 mg, respectively. A similar increase was observed for the content of vitamin E and other components. Furthermore, the obtained concentrates meet the safety parameters required by regulatory documents. A technology for producing grain crispbread using the extrusion method has developed, incorporating whole grains, groats, flavouring additives, and concentrates derived from wild fruits such as hawthorn, rosehip, sea buckthorn, and black chokeberry into the recipe.
Downloads
Metrics
References
Analyze North America breakfast cereals market size and share - growth trends and forecasts (2023-2028). Available at: https://www.mordorin telligence.com/en/industry-reports/north-america-breakfast-cereals-market
Azembaev A.A., Tegisbaev N.E., Kusnieva A.E., Baimurzina M.A., Adibaeva G.L., 2015. Medicinal plants of Kazakhstan used in oriental and academic medicine. – Almaty: “Nur-Print” Publishing House, рр-178.
Gemejieva N.G., Karjaubekova J.J., Lesova J.T. et al., 2016. Analysis of species diversity and study of useful plants in the Baltic region. Uspekhi sovremennoi naukh nostvosnaniya. No.1, рр. 66-70. https://s.natural-sciences.ru/pdf/2016/1/35743.pdf
B.Zh., B., N.E., T., Z.M., K., & L.A., K. (2021). Wild plants of Pavlodar region as potential sugar substitutes. In Biological sciences of Kazakhstan (Vol. 3, pp. 8–15). Non-Profit Limited Company Pavlodar Pedagogical University. https://doi.org/10.52301/1684-940x-2021-3-8-15 DOI: https://doi.org/10.52301/1684-940X-2021-3-8-15
Korkmaz, M., & Dogan, N. Y. (2018). Analysis of Genetic Relationships Between Wild Roses (Rosa L. Spp.) Growing in Turkey. In Erwerbs-Obstbau (Vol. 60, Issue 4, pp. 305–310). Springer Science and Business Media LLC. https://doi.org/10.1007/s10341-018-0375-9 DOI: https://doi.org/10.1007/s10341-018-0375-9
Saricaoglu, F. T., Atalar, I., Yilmaz, V. A., Odabas, H. I., & Gul, O. (2019). Application of multi pass high pressure homogenization to improve stability, physical and bioactive properties of rosehip (Rosa canina L.) nectar. In Food Chemistry (Vol. 282, pp. 67–75). Elsevier BV. https://doi.org/10.1016/j.foodchem.2019.01.002 DOI: https://doi.org/10.1016/j.foodchem.2019.01.002
Mármol, I., Sánchez-de-Diego, C., Jiménez-Moreno, N., Ancín-Azpilicueta, C., & Rodríguez-Yoldi, M. (2017). Therapeutic Applications of Rose Hips from Different Rosa Species. In International Journal of Molecular Sciences (Vol. 18, Issue 6, p. 1137). MDPI AG. https://doi.org/10.3390/ijms18061137 DOI: https://doi.org/10.3390/ijms18061137
Muranets, A. P., Yessimseitova, A. K., Dyussembekova, D. A., Nurtaza, A. S., Kalybayev, K. R., Kozhanov, K. Z., & Kakimzhanova, A. A. (2022). Study of the biodiversity of wild plants of the genus Rosa L. in Kazakhstan and their molecular-genetic identification. In Bulletin of the L.N. Gumilyov Eurasian National University. Bioscience Series (Vol. 139, Issue 2, pp. 44–60). L. N. Gumilyov Eurasian National University. https://doi.org/10.32523/2616-7034-2022-139-2-44-60 DOI: https://doi.org/10.32523/2616-7034-2022-139-2-44-60
Peña, F., Valencia, S., Tereucán, G., Nahuelcura, J., Jiménez-Aspee, F., Cornejo, P., & Ruiz, A. (2023). Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.). In Molecules (Vol. 28, Issue 8, p. 3544). MDPI AG. https://doi.org/10.3390/molecules28083544 DOI: https://doi.org/10.3390/molecules28083544
Ayati, Z., Ramezani, M., Amiri, M. S., Sahebkar, A., & Emami, S. A. (2021). Genus Rosa: A Review of Ethnobotany, Phytochemistry and Traditional Aspects According to Islamic Traditional Medicine (ITM). In Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health (pp. 353–401). Springer International Publishing. https://doi.org/10.1007/978-3-030-64872-5_23 DOI: https://doi.org/10.1007/978-3-030-64872-5_23
Ayati, Z., Amiri, M. S., Ramezani, M., Delshad, E., Sahebkar, A., & Emami, S. A. (2019). Phytochemistry, Traditional Uses and Pharmacological Profile of Rose Hip: A Review. In Current Pharmaceutical Design (Vol. 24, Issue 35, pp. 4101–4124). Bentham Science Publishers Ltd. https://doi.org/10.2174/1381612824666181010151849 DOI: https://doi.org/10.2174/1381612824666181010151849
Olas, B. (2018). The beneficial health aspects of sea buckthorn ( Elaeagnus rhamnoides (L.) A.Nelson) oil. In Journal of Ethnopharmacology (Vol. 213, pp. 183–190). Elsevier BV. https://doi.org/10.1016/j.jep.2017.11.022 DOI: https://doi.org/10.1016/j.jep.2017.11.022
Hasenova A.B., Aralbaeva A.N., Utegalieva R.S., Mamataeva A.T., Murzakhmetova M.K., (2020). Buckthorn (Hippophae Rhamnoides L.) - a source of bioactive substances. Bulletin of Almaty Technological University. No.1. рр.82-88. https://www.vestnik-atu.kz/jour/article/view/259/0
Bittová, M., Krejzová, E., Roblová, V., Kubáň, P., & Kubáň, V. (2014). Monitoring of HPLC profiles of selected polyphenolic compounds in sea buckthorn (Hippophaë rhamnoides L.) plant parts during annual growth cycle and estimation of their antioxidant potential. In Open Chemistry (Vol. 12, Issue 11, pp. 1152–1161). Walter de Gruyter GmbH. https://doi.org/10.2478/s11532-014-0562-y DOI: https://doi.org/10.2478/s11532-014-0562-y
Danielski, R., & Shahidi, F. (2024). Phenolic composition and bioactivities of sea buckthorn (Hippophae rhamnoides L.) fruit and seeds: an unconventional source of natural antioxidants in North America. In Journal of the Science of Food and Agriculture (Vol. 104, Issue 9, pp. 5553–5564). Wiley. https://doi.org/10.1002/jsfa.13386 DOI: https://doi.org/10.1002/jsfa.13386
Criste, A., Urcan, A. C., Bunea, A., Pripon Furtuna, F. R., Olah, N. K., Madden, R. H., & Corcionivoschi, N. (2020). Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. In Molecules (Vol. 25, Issue 5, p. 1170). MDPI AG. https://doi.org/10.3390/molecules25051170 DOI: https://doi.org/10.3390/molecules25051170
Tagibergenova G.G., Omarov M.M., (2020). Biotechnological aspects of the use of sea buckthorn in the production of marmalade.Young Scientist. № 3 (293). рр. 84-86.
Netreba, N., Sandulachi, E., Macari, A., Popa, S., Ribintev, I., Sandu, I., Boestean, O., & Dianu, I. (2024). A Study on the Fruiting and Correlation between the Chemical Indicators and Antimicrobial Properties of Hippophae rhamnoides L. In Horticulturae (Vol. 10, Issue 2, p. 137). MDPI AG. https://doi.org/10.3390/horticulturae10020137 DOI: https://doi.org/10.3390/horticulturae10020137
Rozhnov, E. (2021). Antioxidant Potential of Sea Buckthorn Fruits and Products of Its Processing. In Food Industry (Vol. 6, Issue 1, pp. 23–30). Ural State University of Economics. https://doi.org/10.29141/2500-1922-2021-6-1-3 DOI: https://doi.org/10.29141/2500-1922-2021-6-1-3
Nilova, L. P., & Malyutenkova, S. M. (2021). Antioxidant complexes of sea buckthorn (Hippopha? rhamnoides L.) of northwest Russia. In Proceedings of the Voronezh State University of Engineering Technologies (Vol. 83, Issue 1, pp. 108–114). FSBEI HE Voronezh State University of Engineering Technologies. https://doi.org/10.20914/2310-1202-2021-1-108-114 DOI: https://doi.org/10.20914/2310-1202-2021-1-108-114
Martinelli, F., Perrone, A., Yousefi, S., Papini, A., Castiglione, S., Guarino, F., Cicatelli, A., Aelaei, M., Arad, N., Gholami, M., & Salami, S. (2021). Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn (Crataegus monogyna Jacq.), Rosaceae. In Molecules (Vol. 26, Issue 23, p. 7266). MDPI AG. https://doi.org/10.3390/molecules26237266 DOI: https://doi.org/10.3390/molecules26237266
Kim, E., Jang, E., & Lee, J.-H. (2022). Potential Roles and Key Mechanisms of Hawthorn Extract against Various Liver Diseases. In Nutrients (Vol. 14, Issue 4, p. 867). MDPI AG. https://doi.org/10.3390/nu14040867 DOI: https://doi.org/10.3390/nu14040867
Sun, Y., Meng, X., Chen, M., Li, D., Liu, R., & Sun, T. (2024). Isolation, structural properties and bioactivities of polysaccharides from Crataegus pinnatifida. In Journal of Ethnopharmacology (Vol. 323, p. 117688). Elsevier BV. https://doi.org/10.1016/j.jep.2023.117688 DOI: https://doi.org/10.1016/j.jep.2023.117688
Cui, M., Cheng, L., Zhou, Z., Zhu, Z., Liu, Y., Li, C., Liao, B., Fan, M., & Duan, B. (2024). Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. In Journal of Ethnopharmacology (Vol. 319, p. 117229). Elsevier BV. https://doi.org/10.1016/j.jep.2023.117229 DOI: https://doi.org/10.1016/j.jep.2023.117229
Karomatov Inomjon, Zhalilov Nabijon., 2019. Chemical composition and therapeutic properties of hawthorn. Biology and Integrative Medicine. No.1. рр.109-141.
Kazuma, K., Isobe, Y., Asahina, H., Nehira, T., Satake, M., & Konno, K. (2016). Crataegusins A and B, New Flavanocoumarins from the Dried Fruits of Crataegus pinnatifida var. major (Rosaceae). In Natural Product Communications (Vol. 11, Issue 7, p. 1934578X1601100). SAGE Publications. https://doi.org/10.1177/1934578x1601100724 DOI: https://doi.org/10.1177/1934578X1601100724
Sidor, A., & Gramza-Michałowska, A. (2019). Black Chokeberry Aronia Melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. In Molecules (Vol. 24, Issue 20, p. 3710). MDPI AG. https://doi.org/10.3390/molecules24203710 DOI: https://doi.org/10.3390/molecules24203710
Jurendić, T., & Ščetar, M. (2021). Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. In Antioxidants (Vol. 10, Issue 7, p. 1052). MDPI AG. https://doi.org/10.3390/antiox10071052
Oszmiański, J., & Lachowicz, S. (2016). Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. In Molecules (Vol. 21, Issue 8, p. 1098). MDPI AG. https://doi.org/10.3390/molecules21081098 DOI: https://doi.org/10.3390/molecules21081098
Wawer, Katarzyna Zawada, M. G., Iwona. (2019). Aronia melanocarpa berries: phenolics composition and antioxidant properties changes during fruit development and ripening. In Emirates Journal of Food and Agriculture (p. 214). Pensoft Publishers. https://doi.org/10.9755/ejfa.2019.v31.i3.1921 DOI: https://doi.org/10.9755/ejfa.2019.v31.i3.1921
Denev, P., Číž, M., Kratchanova, M., & Blazheva, D. (2019). Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. In Food Chemistry (Vol. 284, pp. 108–117). Elsevier BV. https://doi.org/10.1016/j.foodchem.2019.01.108 DOI: https://doi.org/10.1016/j.foodchem.2019.01.108
Wang, L., Wang, R., Dong, J., Wang, Y., Huang, X., & Chen, C. (2023). Research on the extraction, purification and determination of chemical components, biological activities, and applications in diet of black chokeberry (Aronia melanocarpa). In Chinese Journal of Analytical Chemistry (Vol. 51, Issue 10, p. 100301). Elsevier BV. https://doi.org/10.1016/j.cjac.2023.100301 DOI: https://doi.org/10.1016/j.cjac.2023.100301
Sidor, A., Drożdżyńska, A., & Gramza-Michałowska, A. (2019). Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors - An overview. In Trends in Food Science & Technology (Vol. 89, pp. 45–60). Elsevier BV. https://doi.org/10.1016/j.tifs.2019.05.006
Borowska, S., & Brzóska, M. M. (2016). Chokeberries (Aronia melanocarpa) and Their Products as a Possible Means for the Prevention and Treatment of Noncommunicable Diseases and Unfavorable Health Effects Due to Exposure to Xenobiotics. In Comprehensive Reviews in Food Science and Food Safety (Vol. 15, Issue 6, pp. 982–1017). Wiley. https://doi.org/10.1111/1541-4337.12221 DOI: https://doi.org/10.1111/1541-4337.12221
Jurendić, T., & Ščetar, M. (2021). Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. In Antioxidants (Vol. 10, Issue 7, p. 1052). MDPI AG. https://doi.org/10.3390/antiox10071052 DOI: https://doi.org/10.3390/antiox10071052
Yang, S.-Q., Wang, D., Gao, Y.-X. Advances in studies on the function and application of Aronia melanocarpa (2021) Food Res. Dev, 42, pp. 206-213.
Ren, Y., Frank, T., Meyer, G., Lei, J., Grebenc, J. R., Slaughter, R., Gao, Y. G., & Kinghorn, A. D. (2022). Potential Benefits of Black Chokeberry (Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health. In Molecules (Vol. 27, Issue 22, p. 7823). MDPI AG. https://doi.org/10.3390/molecules27227823
Ruczaj, A., Brzóska, M. M., & Rogalska, J. (2024). The Protective Impact of Aronia melanocarpa L. Berries Extract against Prooxidative Cadmium Action in the Brain—A Study in an In Vivo Model of Current Environmental Human Exposure to This Harmful Element. In Nutrients (Vol. 16, Issue 4, p. 502). MDPI AG. https://doi.org/10.3390/nu16040502 DOI: https://doi.org/10.3390/nu16040502
Sidor, A., Drożdżyńska, A., & Gramza-Michałowska, A. (2019). Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors - An overview. In Trends in Food Science & Technology (Vol. 89, pp. 45–60). Elsevier BV. https://doi.org/10.1016/j.tifs.2019.05.006 DOI: https://doi.org/10.1016/j.tifs.2019.05.006
Ren, Y., Frank, T., Meyer, G., Lei, J., Grebenc, J. R., Slaughter, R., Gao, Y. G., & Kinghorn, A. D. (2022). Potential Benefits of Black Chokeberry (Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health. In Molecules (Vol. 27, Issue 22, p. 7823). MDPI AG. https://doi.org/10.3390/molecules27227823 DOI: https://doi.org/10.3390/molecules27227823
Ovcharenko A.S., Rasulova E.A., Kondakova O.E., Ivanova O.V.( 2017). Functional ingredients of wild fruits.Food industry. No.12. рр.53-57. https://bik.sfu-kras.ru/elib/view?id=PRSV-pipr/2017/12
B, V., & V, V. (2017). Biochemical characteristic of essential nutrients as a scientific basis of determination of functional properties of specialized products and mechanisms of their action on metabolic processes. In Human. Sport. Medicine (Vol. 17, Issue 2, pp. 5–19). FSAEIHE South Ural State University (National Research University). https://doi.org/10.14529/hsm170201 DOI: https://doi.org/10.14529/hsm170201
Ostroumov L.A., Krieger O.V., Karchin K.V., Shchetinin M.P. (2014). Study of the chemical composition of fruits of common chokeberry (Sorbus Aucuparia) growing in the Kemerovo region. Technics and technology of food production. № 4. pp. 38.-42. https://cyberleninka.ru/article/n/issledovanie-himicheskogo-sostava-plodov-ryabiny-obyknovennoy-sorbusaucuparia-proizrastayuschey-v-kemerovskoy-oblasti
Skrypnik, L. N., Melnichuk, I. P., & Koroleva, Y. V. (2020). Nutritional and biological value of fruits of Crataegus oxyacantha L. In chemistry of plant raw material (Issue 1, pp. 265–275). Altai State University. https://doi.org/10.14258/jcprm.2020015452 DOI: https://doi.org/10.14258/jcprm.2020015452
Petrova S.N., Ivkova A.V. (2014). Chemical composition and antioxidant properties of species of the genus Rosa. L. Chemistry of plant raw materials.. №2. - pp. 13-19. https://cyberleninka.ru/article/n/himicheskiy-sostav-i-antioksidantnye-svoystva-vidov-roda-rosa-l
Mogilny M.P., Balasanyan A.Y., Shaltumayev T.Sh. (2014). Rational use of sources of dietary fibre in the production of food products// New Technologies. - № 1. -рр. 28-33. https://cyberleninka.ru/article/n/sovremennye-napravleniya-ispolzovaniya-pischevyh-volokon-v-kachestve-funktsionalnyh-ingredientov
Elapov, A. A., Kuznetsov, N. N., & Marakhova, A. I. (2021). The Use of Ultrasound in the Extraction of Biologically Active Compounds from Plant Raw Materials, Used or promising for Use in Medicine (Review). In Drug development & registration (Vol. 10, Issue 4, pp. 96–116). Center of Pharmaceutical Analytics Ltd. https://doi.org/10.33380/2305-2066-2021-10-4-96-116 DOI: https://doi.org/10.33380/2305-2066-2021-10-4-96-116
Madhu, B., Srinivas, M. S., Srinivas, G., & Jain, S. K. (2019). Ultrasonic Technology and Its Applications in Quality Control, Processing and Preservation of Food: A Review. In Current Journal of Applied Science and Technology (Vol. 32, Issue 5, pp. 1–11). Sciencedomain International. https://doi.org/10.9734/cjast/2019/46909 DOI: https://doi.org/10.9734/CJAST/2019/46909
Stolarczyk, E. U., Strzempek, W., Łaszcz, M., Leś, A., Menaszek, E., & Stolarczyk, K. (2022). Thiogenistein—Antioxidant Chemistry, Antitumor Activity, and Structure Elucidation of New Oxidation Products. In International Journal of Molecular Sciences (Vol. 23, Issue 14, p. 7816). MDPI AG. https://doi.org/10.3390/ijms23147816 DOI: https://doi.org/10.3390/ijms23147816
Li, X., Liu, J., Chang, Q., Zhou, Z., Han, R., & Liang, Z. (2021). Antioxidant and Antidiabetic Activity of Proanthocyanidins from Fagopyrum dibotrys. In Molecules (Vol. 26, Issue 9, p. 2417). MDPI AG. https://doi.org/10.3390/molecules26092417 DOI: https://doi.org/10.3390/molecules26092417
Nisar, J., Ali Shah, S. M., Ayaz, S., Akram, M., Rashid, A., Mustafa, I., & Nisar, Z. (2022). In vitro comparative evaluation of Tamarix gallica extracts for antioxidant and antidiabetic activity. In Experimental Biology and Medicine (Vol. 248, Issue 3, pp. 253–262). Frontiers Media SA. https://doi.org/10.1177/15353702221139208 DOI: https://doi.org/10.1177/15353702221139208
Toledo, A. G., Souza, J. G. de L. de, Santana, C. B., Mallmann, A. P., dos Santos, C. V., Corrêa, J. M., & Pinto, F. G. da S. (2023). Antimicrobial, antioxidant activity and phytochemical prospection of Eugenia involucrata DC. leaf extracts. In Brazilian Journal of Biology (Vol. 83). FapUNIFESP (SciELO). https://doi.org/10.1590/1519-6984.245753 DOI: https://doi.org/10.1590/1519-6984.245753
Rodsamran, P., & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. In Food Bioscience (Vol. 28, pp. 66–73). Elsevier BV. https://doi.org/10.1016/j.fbio.2019.01.017 DOI: https://doi.org/10.1016/j.fbio.2019.01.017
Zoumpoulakis, P., Sinanoglou, V., Siapi, E., Heropoulos, G., & Proestos, C. (2017). Evaluating Modern Techniques for the Extraction and Characterisation of Sunflower (Hellianthus annus L.) Seeds Phenolics. In Antioxidants (Vol. 6, Issue 3, p. 46). MDPI AG. https://doi.org/10.3390/antiox6030046 DOI: https://doi.org/10.3390/antiox6030046
Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. In Food Bioscience (Vol. 35, p. 100547). Elsevier BV. https://doi.org/10.1016/j.fbio.2020.100547 DOI: https://doi.org/10.1016/j.fbio.2020.100547
Prakash Maran, J., Manikandan, S., Vigna Nivetha, C., & Dinesh, R. (2017). Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. In Arabian Journal of Chemistry (Vol. 10, pp. S1145–S1157). Elsevier BV. https://doi.org/10.1016/j.arabjc.2013.02.007 DOI: https://doi.org/10.1016/j.arabjc.2013.02.007
Ashrafizadeh, M., Zarrabi, A., Mirzaei, S., Hashemi, F., Samarghandian, S., Zabolian, A., Hushmandi, K., Ang, H. L., Sethi, G., Kumar, A. P., Ahn, K. S., Nabavi, N., Khan, H., Makvandi, P., & Varma, R. S. (2021). Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. In Food and Chemical Toxicology (Vol. 157, p. 112576). Elsevier BV. https://doi.org/10.1016/j.fct.2021.112576 DOI: https://doi.org/10.1016/j.fct.2021.112576
He, Y., Lin, Y., Li, Q., & Gu, Y. (2020). The contribution ratio of various characteristic tea compounds in antioxidant capacity by DPPH assay. In Journal of Food Biochemistry (Vol. 44, Issue 7). Hindawi Limited. https://doi.org/10.1111/jfbc.13270 DOI: https://doi.org/10.1111/jfbc.13270
Guseinova, B. M., & Mukailov, M. D. (2018). features of nutrient extraction from of mountain ash, sloe and dogrose fruits. In Izvestiâ Timirâzevskoj selʹskohozâjstvennoj akademii (Issue 1, pp. 109–117). Russian State Agrarian University - Moscow Timiryazev Agricultural Academy. https://doi.org/10.26897/0021-342x-2018-1-109-117 DOI: https://doi.org/10.26897/0021-342X-2018-1-109-117
Bazarnova Yu.G., Ivanchenko O.B. (2016). Study of the composition of biologically active substances of extracts of wild plants. Nutrition Issues. Vol. 85, No. 5, pp. 100-107. https://cyberleninka.ru/article/n/issledovanie-sostava-biologicheski-aktivnyh-veschestv-ekstraktov-dikorastuschih-rasteni y
Iskakova, G., Kizatova, M., Baiysbayeva, M., Azimova, S., Izembayeva, A., & Zharylkassynova, Z. (2021). Justification of pectin concentrate safe storage terms by pectin mass ratio. In Eastern-European Journal of Enterprise Technologies (Vol. 4, Issue 11(112), pp. 25–32). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2021.237940 DOI: https://doi.org/10.15587/1729-4061.2021.237940
Özdemir, N., Pashazadeh, H., Zannou, O., & Koca, I. (2022). Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property, of the vinegar produced from rosehip fruit (Rosa canina L.). In LWT (Vol. 154, p. 112716). Elsevier BV. https://doi.org/10.1016/j.lwt.2021.112716 DOI: https://doi.org/10.1016/j.lwt.2021.112716
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.