Thermal performance assessment of an indirect solar dryer: A case study of Bananas

Authors

  • Abderrahmane Mendyl ELTE Eötvös Loránd University / Institute of Geography and Earth Sciences / Doctoral School of Environmental Sciences, Department of Meteorology, Egyetem tér 1-3, 1053, H-1117 Budapest, Hungary; Mohammed V University of Rabat, Faculty of Sciences, B., P 1014 Rabat, Morocco https://orcid.org/0000-0002-0736-8110
  • Houria Bouzghiba Hungarian University of Agriculture and Life Science, Environmental Doctoral School, Páter Karoly utca 1, 2100, Godollo, Hungary https://orcid.org/0000-0003-0776-5076
  • Rachid Tadili Mohammed V University of Rabat, Faculty of Sciences, B., P 1014 Rabat, Morocco
  • Tamás Weidinger ELTE Eötvös Loránd University / Institute of Geography and Earth Sciences / Doctoral School of Environmental Sciences, Department of Meteorology, Egyetem tér 1-3, 1053, H-1117 Budapest, Hungary

DOI:

https://doi.org/10.5219/1883

Keywords:

indirect solar dryer, solar collector, banana, global irradiance

Abstract

This study presents a design for an absorber used in a solar air collector for an indirect solar dryer. The absorber comprises two aluminium plates corrugated and joined together to form parallel cylinders, enabling airflow within the collector. This research aims to experimentally examine the drying process of two types of bananas, one from Morocco and the other from abroad, using the designed solar air collector. Additionally, the study aims to investigate the peculiarities of the drying process and the performance of the solar dryer employed. The experiments were conducted by subjecting the bananas to the designed solar air collector, and the evolution of drying was monitored. The initial mass of the bananas used was 631.6 g for the Moroccan banana and 713.6 g for the Export banana. After the drying process, the mass of the Moroccan banana reduced to 77.5 g, while the Export banana reduced to 137.3 g, indicating significant moisture removal. The percentage of the amount of water extracted (Q) from the bananas was found to be 87.7% for the Moroccan banana and 80.8% for the Export banana. These results demonstrate the effectiveness of the corrugated aluminium plate absorber in facilitating the drying process in the solar air collector. The significant reduction in the mass of the bananas and the high percentage of water extraction highlight the efficiency of the solar dryer in removing moisture from the agricultural produce. The findings of this study contribute to the understanding of the drying process of bananas and offer valuable insights for the design and optimization of solar drying systems for agricultural applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Basunia, M. A., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. In Journal of Food Engineering (Vol. 47, Issue 4, pp. 295–301). Elsevier BV. https://doi.org/10.1016/s0260-8774(00)00133-3 DOI: https://doi.org/10.1016/S0260-8774(00)00133-3

Hegde, V. N., Hosur, V. S., Rathod, S. K., Harsoor, P. A., & Narayana, K. B. (2015). Design, fabrication and performance evaluation of solar dryer for banana. In Energy, Sustainability and Society (Vol. 5, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s13705-015-0052-x DOI: https://doi.org/10.1186/s13705-015-0052-x

Nabnean, S., & Nimnuan, P. (2020). Experimental performance of direct forced convection household solar dryer for drying banana. In Case Studies in Thermal Engineering (Vol. 22, p. 100787). Elsevier BV. https://doi.org/10.1016/j.csite.2020.100787 DOI: https://doi.org/10.1016/j.csite.2020.100787

Tiwari, A. (2016). A Review on Solar Drying of Agricultural Produce. In Journal of Food Processing & Technology (Vol. 7, Issue 9). OMICS Publishing Group. https://doi.org/10.4172/2157-7110.1000623 DOI: https://doi.org/10.4172/2157-7110.1000623

Çiftçioğlu, G. A., Kadırgan, F., Kadırgan, M. A. N., & Kaynak, G. (2020). Smart agriculture through using cost-effective and high-efficiency solar drying. In Heliyon (Vol. 6, Issue 2, p. e03357). Elsevier BV. https://doi.org/10.1016/j.heliyon.2020.e03357 DOI: https://doi.org/10.1016/j.heliyon.2020.e03357

Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., & Müller, J. (2020). Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. In Journal of Environmental Management (Vol. 268, p. 110730). Elsevier BV. https://doi.org/10.1016/j.jenvman.2020.110730 DOI: https://doi.org/10.1016/j.jenvman.2020.110730

VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of solar drying technologies. In Renewable and Sustainable Energy Reviews (Vol. 16, Issue 5, pp. 2652–2670). Elsevier BV. https://doi.org/10.1016/j.rser.2012.01.007 DOI: https://doi.org/10.1016/j.rser.2012.01.007

Surányi, D. (2017). Fruit drying traditions in Hungary. In International Journal of Horticultural Science (Vol. 23, Issues 1–4). University of Debrecen/ Debreceni Egyetem. https://doi.org/10.31421/ijhs/23/1-4./1193 DOI: https://doi.org/10.31421/IJHS/23/1-4./1193

Santos, F. S. dos, Figueirêdo, R. M. F. de, Queiroz, A. J. de M., & Santos, D. da C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. In Revista Brasileira de Engenharia Agrícola e Ambiental (Vol. 21, Issue 12, pp. 872–877). FapUNIFESP (SciELO). https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877 DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877

SH, G., M, D., & A, Z. (2012). Kinetics of apricot thin layer drying in a mixed and indirect mode solar dryer. In International Journal of Agriculture Sciences (Vol. 4, Issue 6, pp. 262–267). Bioinfo Publications. https://doi.org/10.9735/0975-3710.4.6.262-267 DOI: https://doi.org/10.9735/0975-3710.4.6.262-267

Pruengam, P., Pathaveerat, S., & Pukdeewong, P. (2021). Fabrication and testing of double-sided solar collector dryer for drying banana. In Case Studies in Thermal Engineering (Vol. 27, p. 101335). Elsevier BV. https://doi.org/10.1016/j.csite.2021.101335 DOI: https://doi.org/10.1016/j.csite.2021.101335

Essalhi, H., Tadili, R., & Bargach, M. N. (2017). Conception of a Solar Air Collector for an Indirect Solar Dryer. Pear Drying Test. In Energy Procedia (Vol. 141, pp. 29–33). Elsevier BV. https://doi.org/10.1016/j.egypro.2017.11.114 DOI: https://doi.org/10.1016/j.egypro.2017.11.114

López Plaza, B., Fernández Cruz, E., Santurino, C., & Gómez Candela, C. (2021). Nutritional composition and nutritional claims of Canary Islands banana. In Nutrición Hospitalaria. ARAN Ediciones. https://doi.org/10.20960/nh.03614 DOI: https://doi.org/10.20960/nh.03614

Galán Saúco, V. (2020). Broad overview of the subtropical banana industry. In Acta Horticulturae (Issue 1272, pp. 1–12). International Society for Horticultural Science (ISHS). https://doi.org/10.17660/actahortic.2020.1272.1 DOI: https://doi.org/10.17660/ActaHortic.2020.1272.1

Mendyl, A., Mabasa, B., Bouzghiba, H., & Weidinger, T. (2022). Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco. In Applied Sciences (Vol. 13, Issue 1, p. 320). MDPI AG. https://doi.org/10.3390/app13010320 DOI: https://doi.org/10.3390/app13010320

Abouabdillah, A., Capone, R., El Youssfi, L., Debs, P., Harraq, A., El Bilali, H., el Amrani, M., Bottalico, F., & Driouech, N. (2015). Household food waste in Morocco: An exploratory survey. In Book of Proceedings of the VI International Scientific Agriculture Symposium “Agrosym (pp. 1353–1360). https://doi.org/10.7251/AGSY15051353A

El Barnossi, A., Moussaid, F., & Iraqi Housseini, A. (2021). Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. In Biotechnology Reports (Vol. 29, p. e00574). Elsevier BV. https://doi.org/10.1016/j.btre.2020.e00574 DOI: https://doi.org/10.1016/j.btre.2020.e00574

Aguilera, J. M., Chiralt, A., & Fito, P. (2003). Food dehydration and product structure. In Trends in Food Science & Technology (Vol. 14, Issue 10, pp. 432–437). Elsevier BV. https://doi.org/10.1016/s0924-2244(03)00122-5 DOI: https://doi.org/10.1016/S0924-2244(03)00122-5

Ranjha, M. M. A. N., Irfan, S., Nadeem, M., & Mahmood, S. (2020). A Comprehensive Review on Nutritional Value, Medicinal Uses, and Processing of Banana. In Food Reviews International (Vol. 38, Issue 2, pp. 199–225). Informa UK Limited. https://doi.org/10.1080/87559129.2020.1725890 DOI: https://doi.org/10.1080/87559129.2020.1725890

Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. In Renewable Energy (Vol. 29, Issue 8, pp. 1265–1275). Elsevier BV. https://doi.org/10.1016/j.renene.2003.12.014 DOI: https://doi.org/10.1016/j.renene.2003.12.014

Verma, S. K., Gupta, N. K., & Rakshit, D. (2020). A comprehensive analysis on advances in application of solar collectors considering design, process and working fluid parameters for solar to thermal conversion. In Solar Energy (Vol. 208, pp. 1114–1150). Elsevier BV. https://doi.org/10.1016/j.solener.2020.08.042 DOI: https://doi.org/10.1016/j.solener.2020.08.042

M.R., N. (2022). Intensification of the Process of Drying Fruits and Vegetables in a Recirculating Solar Dryer. In RA JOURNAL OF APPLIED RESEARCH (Vol. 08, Issue 05). Everant Journals. https://doi.org/10.47191/rajar/v8i5.02 DOI: https://doi.org/10.47191/rajar/v8i5.02

F A Hayatu, & M M Dukku. (2022). Development and performance evaluation of a dual energy source solar dryer for tomatoes. In Global Journal of Engineering and Technology Advances (Vol. 11, Issue 2, pp. 071–086). GSC Online Press. https://doi.org/10.30574/gjeta.2022.11.2.0081 DOI: https://doi.org/10.30574/gjeta.2022.11.2.0081

Huddar, V. B., Razak, A., Cuce, E., Gadwal, S., Alwetaishi, M., Afzal, A., Saleel, C. A., & Shaik, S. (2022). Thermal Performance Study of Solar Air Dryers for Cashew Kernel: A Comparative Analysis and Modelling Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). In A. Álvarez-Gallegos (Ed.), International Journal of Photoenergy (Vol. 2022, pp. 1–18). Hindawi Limited. https://doi.org/10.1155/2022/4598921 DOI: https://doi.org/10.1155/2022/4598921

Ullah, H., Ahmad, S., Thompson, A., (2006). Effect of high humidity and water on storage life and quality of bananas. International Journal of Agriculture & Biology (pakistan), 8(6), 1560–8530. ISSN:1560-8530. https://agris.fao.org/agris-search/search.do?recordID=PK2007001058

Belessiotis, V., & Delyannis, E. (2011). Solar drying. In Solar Energy (Vol. 85, Issue 8, pp. 1665–1691). Elsevier BV. https://doi.org/10.1016/j.solener.2009.10.001 DOI: https://doi.org/10.1016/j.solener.2009.10.001

Kimball, B. A., Idso, S. B., & Aase, J. K. (1982). A model of thermal radiation from partly cloudy and overcast skies. In Water Resources Research (Vol. 18, Issue 4, pp. 931–936). American Geophysical Union (AGU). https://doi.org/10.1029/wr018i004p00931 DOI: https://doi.org/10.1029/WR018i004p00931

Baig, A., Akhter, P., & Mufti, A. (1991). A novel approach to estimate the clear day global radiation. In Renewable Energy (Vol. 1, Issue 1, pp. 119–123). Elsevier BV. https://doi.org/10.1016/0960-1481(91)90112-3 DOI: https://doi.org/10.1016/0960-1481(91)90112-3

Mohebbi, M., Shahidi, F., Fathi, M., Ehtiati, A., & Noshad, M. (2011). Prediction of moisture content in pre-osmosed and ultrasounded dried banana using genetic algorithm and neural network. In Food and Bioproducts Processing (Vol. 89, Issue 4, pp. 362–366). Elsevier BV. https://doi.org/10.1016/j.fbp.2010.08.001 DOI: https://doi.org/10.1016/j.fbp.2010.08.001

Meteomanz. Retrieved from http://www.meteomanz.com/index?l=1.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. In Quarterly Journal of the Royal Meteorological Society (Vol. 146, Issue 730, pp. 1999–2049). Wiley. https://doi.org/10.1002/qj.3803 DOI: https://doi.org/10.1002/qj.3803

Mabasa, B., Lysko, M. D., Tazvinga, H., Zwane, N., & Moloi, S. J. (2021). The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa. In Energies (Vol. 14, Issue 9, p. 2583). MDPI AG. https://doi.org/10.3390/en14092583 DOI: https://doi.org/10.3390/en14092583

Green, M. A., Keevers, M. J., Thomas, I., Lasich, J. B., Emery, K., & King, R. R. (2015). 40% efficient sunlight to electricity conversion. In Progress in Photovoltaics: Research and Applications (Vol. 23, Issue 6, pp. 685–691). Wiley. https://doi.org/10.1002/pip.2612 DOI: https://doi.org/10.1002/pip.2612

Lan, D., & Green, M. A. (2018). Pathways towards a 50% efficiency spectrum-splitting photovoltaic system: Application of built-in filters and generalization of concept. In Energy Procedia (Vol. 150, pp. 83–86). Elsevier BV. https://doi.org/10.1016/j.egypro.2018.09.004 DOI: https://doi.org/10.1016/j.egypro.2018.09.004

F. Holmgren, W., W. Hansen, C., & A. Mikofski, M. (2018). pvlib python: a python package for modeling solar energy systems. In Journal of Open Source Software (Vol. 3, Issue 29, p. 884). The Open Journal. https://doi.org/10.21105/joss.00884 DOI: https://doi.org/10.21105/joss.00884

Reda, I., & Andreas, A. (2004). Solar position algorithm for solar radiation applications. In Solar Energy (Vol. 76, Issue 5, pp. 577–589). Elsevier BV. https://doi.org/10.1016/j.solener.2003.12.003 DOI: https://doi.org/10.1016/j.solener.2003.12.003

Singh, D., & Mall, P. (2020). Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (pp. 1–18). Informa UK Limited. https://doi.org/10.1080/15567036.2020.1810825 DOI: https://doi.org/10.1080/15567036.2020.1810825

Bolin, H. R., Salunkhe, D. K., & Lund, D. (1982). Food dehydration by solar energy. In C R C Critical Reviews in Food Science and Nutrition (Vol. 16, Issue 4, pp. 327–354). Informa UK Limited. https://doi.org/10.1080/10408398209527339 DOI: https://doi.org/10.1080/10408398209527339

Macedo, L. L., Vimercati, W. C., Araújo, C., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. In Journal of Food Process Engineering (Vol. 43, Issue 9). Wiley. https://doi.org/10.1111/jfpe.13451 DOI: https://doi.org/10.1111/jfpe.13451

ASABE. (2023). American Society of Agricultural and Biological Engineers Standards. ASABE Standard (pp. 351–353). https://webstore.ansi.org/sdo/asabe.

Jadallah, A., Alsaadi, M., & Hussien, S. (2020). The Hybrid (PVT) Double-Pass System with a Mixed-Mode Solar Dryer for Drying Banana. In Engineering and Technology Journal (Vol. 38, Issue 8, pp. 1214–1225). University of Technology. https://doi.org/10.30684/etj.v38i8a.535. DOI: https://doi.org/10.30684/etj.v38i8A.535

Dandamrongrak, R., Mason, R., & Young, G. (2003). The effect of pretreatments on the drying rate and quality of dried bananas. In International Journal of Food Science and Technology (Vol. 38, Issue 8, pp. 877–882). Wiley. https://doi.org/10.1046/j.0950-5423.2003.00753.x DOI: https://doi.org/10.1046/j.0950-5423.2003.00753.x

Noori, A. W., Royen, M. J., & Haydary, J. (2021). Effect of ambient parameters change on mint leaves solar drying. In Acta Chimica Slovaca (Vol. 14, Issue 1, pp. 14–24). Walter de Gruyter GmbH. https://doi.org/10.2478/acs-2021-0003 DOI: https://doi.org/10.2478/acs-2021-0003

Borges, S. V., Mancini, M. C., Corrêa, J. L. G., & Leite, J. (2010). Secagem de bananas prata e d’água por convecção forçada. In Ciência e Tecnologia de Alimentos (Vol. 30, Issue 3, pp. 605–612). FapUNIFESP (SciELO). https://doi.org/10.1590/s0101-20612010000300006 DOI: https://doi.org/10.1590/S0101-20612010000300006

Verma, D., Kaushik, N., & Rao, P. S. (2013). Application of High Hydrostatic Pressure as a Pretreatment for Osmotic Dehydration of Banana Slices (Musa cavendishii) Finish-Dried by Dehumidified Air Drying. In Food and Bioprocess Technology (Vol. 7, Issue 5, pp. 1281–1297). Springer Science and Business Media LLC. https://doi.org/10.1007/s11947-013-1124-6 DOI: https://doi.org/10.1007/s11947-013-1124-6

Lingayat, A., & V.P., C. (2021). Numerical investigation on solar air collector and its practical application in the indirect solar dryer for banana chips drying with energy and exergy analysis. In Thermal Science and Engineering Progress (Vol. 26, p. 101077). Elsevier BV. https://doi.org/10.1016/j.tsep.2021.101077 DOI: https://doi.org/10.1016/j.tsep.2021.101077

Jiang, H., Zhang, M., & Mujumdar, A. S. (2010). Physico-chemical changes during different stages of MFD/FD banana chips. In Journal of Food Engineering (Vol. 101, Issue 2, pp. 140–145). Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2010.06.002 DOI: https://doi.org/10.1016/j.jfoodeng.2010.06.002

Sun, D.-W., & Woods, J. L. (1993). The Moisture Content/Relative Humidity Equilibrium Relationship Of Wheat - A Review. In Drying Technology (Vol. 11, Issue 7, pp. 1523–1551). Informa UK Limited. https://doi.org/10.1080/07373939308916918 DOI: https://doi.org/10.1080/07373939308916918

Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. In Journal of Food Engineering (Vol. 82, Issue 2, pp. 261–267). Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2007.02.032 DOI: https://doi.org/10.1016/j.jfoodeng.2007.02.032

Downloads

Published

2023-07-13

How to Cite

Mendyl, A., Bouzghiba, H., Tadili, R., & Weidinger, T. (2023). Thermal performance assessment of an indirect solar dryer: A case study of Bananas. Potravinarstvo Slovak Journal of Food Sciences, 17, 550–564. https://doi.org/10.5219/1883