Changes in the level of consolidation of the fatty acid profile of Hermetia illucens larvae grown on a substrate contaminated with heavy metals

Authors

  • Svyatoslav Loskutov All-Russian Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, Liteiny pr. 55, St. Petersburg, 191014, Russia, Tel.: +79052144323 https://orcid.org/0000-0002-8102-2900
  • Yan Puhalsky Pushkin Leningrad State University, Petersburg highway, 10., St. Petersburg, Pushkin, 196605, Russia, Tel.: +79523996166 https://orcid.org/0000-0001-5233-3497
  • Pavel Sorokoumov All-Russian Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, Liteiny pr. 55, St. Petersburg, 191014, Russia, Tel.: +79217535957 https://orcid.org/0000-0002-8767-3720
  • Dmitry Ryabukhin All-Russian Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, Liteiny pr. 55, St. Petersburg, 191014, Russia, Tel.: +79500299228
  • Nikolay Vorobyev All-Russian Research Institute for Agricultural Microbiology, Podbelsky shosse 3, Pushkin, St. Petersburg, 196608, Russia, Tel.: +79052794661 https://orcid.org/0000-0001-8300-2287

DOI:

https://doi.org/10.5219/1852

Keywords:

Hermetia illucens, Black Lion fly, heavy metal, fatty acid, fractal, bioconsolidation index

Abstract

We conducted a comparative investigation to examine the alterations in the composition and content of the fatty acid complex in the larvae of the Black Lion fly (Hermetia illucens) as they were reared under different concentrations and combinations of heavy metals. The use of the method of mass spectrometric analysis of the obtained biomass showed that linoleic, lauric and oleic fatty acids predominated in the composition of the larvae. The use of the mathematical method of fractal analysis based on the data on the profile distribution of fatty acid components in the insect body according to the experimental variants showed that samples with metal concentrations of 20 mg of cadmium, 800 mg of cobalt and Mix (200 mg of copper, 20 mg cadmium, 200 mg cobalt, 20 mg aluminium and 50 mg lead) per kilogram of dry food. The variation in the values of the indices of the biosystemic consolidation of acids, based on the conversion to their molar masses, ranged from 0.41 to 0.82.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Tsoi, M. (2019). Cultivation of the black soldier fly Hermetia illucens (Linnaeus, 1758) (Diptera: stratiomyidae). In Scientific and agronomic journal (Vol. 106, Issue 3, p. 46–48). Academic Journals. https://doi.org/10.34736/FNC.2019.106.3.015

Huis, A., Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible Insects: Future Prospects for Food and Feed Security. In Food and Agriculture Organization of the United Nations. Rome.

Sverguzova, S., Shaikhiev, I., Sapronova, Zh., Gafarov, R., & Voronina, Y. (2021). Foreign experience of growing Hermetia illucens fly larvae on organic waste. In Security, protection and environmental protection: fundamental and applied research, (pp. 273–281). Academic Journals.

Nekrasov, R., Chabaev, M., Zelenchenkova, A., Bastrakov, A., & Ushakova, N. (2019). Nutritional properties of the larvae of Hermetia illucens L. - a new feed product for young pigs (Sus scrofa domesticus erxleben). In Agricultural biology (Vol. 54, Issue 2, pp. 316–325). Academic Journals. https://doi.org/ 10.15389/agrobiology.2019.2.316rus DOI: https://doi.org/10.15389/agrobiology.2019.2.316eng

Papaev, R., Shalamova, G., Motina, T., & Talan, M. (2021). Fatty acid composition of flour worms Zophobas morio and larvae of Hermetia illucens and their influence on the live weight of young white rats. In Scientific notes of the Kazan State Academy of Veterinary Medicine N.E. Bauman (Vol. 245, Issue 1, p. 150–153). Academic Journals. https://doi.org/10.31588/2413-4201-1883-245-1-150-153 DOI: https://doi.org/10.31588/2413-4201-1883-245-1-150-153

Sadykova, E., Shumakova, A., Shestakova, S., & Tyshko, N. (2021). Nutritional and biological value of the biomass of larvae of Hermetia illucens. In Problems of nutrition (Vol. 90, Issue 2 (534), pp. 73–82). Academic Journals. https://doi.org/10.33029/0042-8833-2021-90-2-73-82 DOI: https://doi.org/10.33029/0042-8833-2021-90-2-73-82

Tyshko, N., Zhminchenko, V., Nikitin, N., Trebukh, M., Shestakova, S., Pashorina, V., & Sadykova, E. (2021). Complex studies of the biological value of the protein of the larvae of Hermetia illucens. In Problems of nutrition (Vol. 90, Issue 5 (537), pp. 49–58). Academic Journals. https://doi.org/10.33029/0042-8833-2021-90-5-49-58 DOI: https://doi.org/10.33029/0042-8833-2021-90-5-49-58

Bessa, L. W., Pieterse, E., Marais, J., & Hoffman, L. C. (2020). Why for feed and not for human consumption? The black soldier fly larvae. In Comprehensive Reviews in Food Science and Food Safety (Vol. 19, Issue 5, pp. 2747–2763). John Wiley & Sons. https://doi.org/10.1111/1541-4337.12609 DOI: https://doi.org/10.1111/1541-4337.12609

Shaikhiev, I., Sverguzova, S., & Sapronova, Zh. (2020). The use of Hermetia illucens fly larvae in feed rations for rearing piglets and adult pigs. In Sciences of Europe (Vol. 2, Issue 59, pp. 12–19). Academic Journals.

Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. In Animal Feed Science and Technology (Vol. 203, pp. 1–22). Elsevier BV. https://doi.org/10.1016/j.anifeedsci.2015.03.001 DOI: https://doi.org/10.1016/j.anifeedsci.2015.03.001

Shaikhiev, I., Sverguzova, S., Sapronova, Zh., & Danshina, E. (2020). The use of biomass of Hermetia illucens larvae for growing fish in aquaculture (a review of foreign literature). In Fisheries (Issue 5, pp. 86–92). Academic Journals.

Shaikhiev, I., Sverguzova, S., Sapronova, Zh., & Voronina, Yu. (2021). Experience of growing tilapia in aquaculture using larvae of the fly Hermetia illucens abroad (literature review). In Sciences of Europe (Vol. 2, Issue 67, pp. 42–51). Academic Journals. https://doi.org/10.37663/0131-6184-2020-5-86-92 DOI: https://doi.org/10.37663/0131-6184-2020-5-86-92

Müller, A., Wolf, D., & Gutzeit, H. O. (2017). The black soldier fly, Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. In Zeitschrift für Naturforschung C (Vol. 72, Issues 9-10, pp. 351–363). Walter de Gruyter GmbH. https://doi.org/10.1515/znc-2017-0030 DOI: https://doi.org/10.1515/znc-2017-0030

Yumatov, E. (2019). Evaluation of new sources of insect protein in the conditions of the Russian Federation as a sustainable alternative to traditional options for the production of protein-containing products. In Agriculture (Issue 1, p. 1–24). Academic Journals. https://doi.org/10.7256/2453-8809.2019.1.29886 DOI: https://doi.org/10.7256/2453-8809.2019.1.29886

Diener, S., Zurbrügg, C., & Tockner, K. (2015). Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. In Journal of Insects as Food and Feed (Vol. 1, Issue 4, pp. 261–270). Wageningen Academic Publishers. https://doi.org/10.3920/jiff2015.0030

Ushakova, N., Brodsky, E., Kovalenko, A., Bastrakov, A., Kozlova, A., & Pavlov, D. (2016). Features of the lipid fraction of the larvae of the black soldier fly Hermetia illucens. In Reports of the Academy of Sciences (Vol. 468, Issue 4, pp. 462). Academic Journals. https://doi.org/10.1134/S1607672916030145 DOI: https://doi.org/10.1134/S1607672916030145

Ramos-Bueno, R. P., González-Fernández, M. J., Sánchez-Muros-Lozano, M. J., García-Barroso, F., & Guil-Guerrero, J. L. (2016). Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. In European Food Research and Technology (Vol. 242, Issue 9, pp. 1471–1477). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-016-2647-7 DOI: https://doi.org/10.1007/s00217-016-2647-7

Caligiani, A., Marseglia, A., Sorci, A., Bonzanini, F., Lolli, V., Maistrello, L., & Sforza, S. (2019). Influence of the killing method of the black soldier fly on its lipid composition. In Food Research International (Vol. 116, pp. 276–282). Elsevier BV. https://doi.org/10.1016/j.foodres.2018.08.033 DOI: https://doi.org/10.1016/j.foodres.2018.08.033

Gao, Q., Wang, X., Wang, W., Lei, C., & Zhu, F. (2017). Influences of chromium and cadmium on the development of black soldier fly larvae. In Environmental Science and Pollution Research (Vol. 24, Issue 9, pp. 8637–8644). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-017-8550-3

Zhu, D., An, X.-L., Chen, Q.-L., Yang, X.-R., Christie, P., Ke, X., Wu, L.-H., & Zhu, Y.-G. (2018). Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. In Environmental Science & Technology (Vol. 52, Issue 5, pp. 3081–3090). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.7b04292 DOI: https://doi.org/10.1021/acs.est.7b04292

Weinberg, S. L., Harel, D., & Abramowitz, S. K. (2020). Statistics Using R. Cambridge University Press. https://doi.org/10.1017/9781108755351 DOI: https://doi.org/10.1017/9781108755351

R Core Team. (2018). R. A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Retrieved from https://www.R-project.org.

Vorobyov, N., Pukhalsky, Ya., Sviridova, O., Pishchik, V., & Belimov, A. A. (2018). Computer program for calculating the fractal index of exudation of sugars, organic acids and amino acids by plants. Certificate no. 2018614119 dated 04/02/2018.

Rybin, V., Blinov, & Yu. (2001). Antimicrobial properties of lipids. In Izvestiya TINRO. (Issue 129, pp. 179–196). Academic Journals.

Georgescu, B., Boaru, A. M., Muntean, L., Sima, N., Struți, D. I., Păpuc, T. A., & Georgescu, C. (2022). Modulating the Fatty Acid Profiles of Hermetia illucens Larvae Fats by Dietary Enrichment with Different Oilseeds: A Sustainable Way for Future Use in Feed and Food. In Insects (Vol. 13, Issue 9, p. 801). MDPI AG. https://doi.org/10.3390/insects13090801 DOI: https://doi.org/10.3390/insects13090801

Li, X., Dong, Y., Sun, Q., Tan, X., You, C., Huang, Y., & Zhou, M. (2022). Growth and Fatty Acid Composition of Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae) Larvae Are Influenced by Dietary Fat Sources and Levels. In Animals (Vol. 12, Issue 4, p. 486). MDPI AG. https://doi.org/10.3390/ani12040486 DOI: https://doi.org/10.3390/ani12040486

Zhang, X., Meng, H., Shen, Y., Li, J., Wang, J., Zhou, H., Ding, J., Wang, J., & Song, L. (2018). Survey on heavy metal concentrations and maturity indices of organic fertilizer in China. In International Journal of Agricultural and Biological Engineering (Vol. 11, Issue 6, pp. 172–179). International Journal of Agricultural and Biological Engineering (IJABE). https://doi.org/10.25165/j.ijabe.20181106.4671 DOI: https://doi.org/10.25165/j.ijabe.20181106.4671

Matsue, M., Mori, Y., Nagase, S., Sugiyama, Y., Hirano, R., Ogai, K., Ogura, K., Kurihara, S., & Okamoto, S. (2019). Measuring the Antimicrobial Activity of Lauric Acid against Various Bacteria in Human Gut Microbiota Using a New Method. In Cell Transplantation (Vol. 28, Issue 12, pp. 1528–1541). SAGE Publications. https://doi.org/10.1177/0963689719881366 DOI: https://doi.org/10.1177/0963689719881366

Yang, HT., Chen, JW., Rathod, J., Jiang, YZ., Tsai, PJ., Hung, YP., Ko WC., Paredes-Sabja D., Huang, IH. (2018). Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model. Frontiers in Microbiology (Vol. 17, Issue 8, pp. 2635). Frontiers Media SA. https://doi.org/doi:10.3389/fmicb.2017.02635 DOI: https://doi.org/10.3389/fmicb.2017.02635

Skřivanová, E., Pražáková, Š., Benada, O., Hovorková, P., Marounek, M. (2014). Susceptibility of Escherichia coli and Clostridium perfringens to sucrose monoesters of capric and lauric acid. Czech J. Anim. Sci. (Vol. 59, Issue 8, pp. 374–380). Academic Journals. DOI: https://doi.org/10.17221/7588-CJAS

Bartolotta, S, García, CC, Candurra, NA, Damonte, EB. (2001). Effect of fatty acids on arenavirus replication: inhibition of virus production by lauric acid. Arch Virol (Vol. 146, Issue 4, pp. 777-90). Springer Link. https://doi.org/doi:10.1007/s007050170146 DOI: https://doi.org/10.1007/s007050170146

Schroeder, M. (2001). Fractals, chaos, power laws. Miniatures from endless paradise. Izhevsk: SRC Regular and Chaotic Dynamics.

Bogatykh, B.A. (2012). The fractal nature of living things: a systematic study of biological evolution and the nature of consciousness.

Mandelbrot, B. (2002). Fractal geometry of nature. Institute for Computer Research.

Gelashvili, D.B., Yakimov, V.N., Iudin, D.I., Rosenberg, G.S., Solntsev, L.A., Saksonov, S.V., Snegireva, M.S. (2010). Fractal aspects of the taxic diversity. Journal of General Biology (Vol. 71, Issue 2, pp. 115–130). Academic Journals.

Gorodnichev, R.M., Pestryakova, L.A., Ushnitskaya, L.A., Levina, S.N., Davydova, P.V. (2019). Methods of ecological research. Fundamentals of statistical data processing: teaching aid. Yakutsk: NEFU Publishing House.

Grishanov, G.V., Grishanova, Yu.N. (2010). Methods for studying and evaluating biological diversity. University. them. I. Kant.

Magnussen, S., Boyle, T. J. B. (1995). Estimating sample size for inference about the Shannon-Weaver and the Simpson indices of species diversity. Forest Ecology and Management (Vol. 78, Issue 3, pp. 71–84). Elsevier BV. https://doi.org/10.1016/0378-1127(95)03596-1 DOI: https://doi.org/10.1016/0378-1127(95)03596-1

Scheiner, S.M. (2012). Biological Diversity: Frontiers in Measurement and Assessment edited by AnneE. Magurran and Brian J. McGill. The Quarterly Review of Biology (Vol. 87, pp. 254-254). The University of Chicago Press. https://doi.org/10.1086/666756 DOI: https://doi.org/10.1086/666756

Martoja, R., Bouquegneau, J. M., Verthe, C. (1983). Toxicological effects and storage of cadmium and mercury in an insect Locusta migratoria. J. Invert. Pathol (Vol. 42, pp. 17-32). Elsevier BV. https://doi.org/10.1016/0022-2011(83)90198-2 DOI: https://doi.org/10.1016/0022-2011(83)90198-2

Bodar, C. W. M., van der Sluis, I., Voogt, P. A., Zander, D. I. (1988). Effects of cadmium on conumption, assimilation and biochemical parameters of Daphnia magna: possible implications for reproduction. Comp. Biochem. Physiol. (Vol. 90, pp. 341-346). Elsevier BV. https://doi.org/10.1016/0742-8413(88)90008-4 DOI: https://doi.org/10.1016/0742-8413(88)90008-4

Charlton, A.J., Dickinson, M., Wakefield, M.E., Fitches, E., Kenis, M., Han, R., Zhu, F., Kone, N., Grant, M., Devic, E., et al. (2015). Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed (Vol. 1, pp. 7–16). Wageningen Academic Publishers. https://doi.org/10.3920/JIFF2014.0020 DOI: https://doi.org/10.3920/JIFF2014.0020

Purschke, B., Scheibelberger, R., Axmann, S., Adler, A., Jager, H. (2017). Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. Part A Chem. Anal. Control. Expos. Risk Assess. (Vol. 34, Issue 8, pp. 1410–1420). Taylor & Francis Group. https://doi.org/10.1080/19440049.2017.1299946 DOI: https://doi.org/10.1080/19440049.2017.1299946

Diener, S., Zurbrügg, C., Tockner, K. (2015). Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed. (Vol. 1, pp. 261–270). Wageningen Academic Publishers. https://doi.org/10.3920/JIFF2015.0030 DOI: https://doi.org/10.3920/JIFF2015.0030

van der Fels-Klerx, HJ., Camenzuli, L., van der Lee MK., Oonincx, DG. (2016). Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates (Vol. 11, e0166186). PLoS ONE. https://doi.org/10.1371/journal.pone.0166186 DOI: https://doi.org/10.1371/journal.pone.0166186

Gao, Q., Wang, X., Wang, W., Lei, C., Zhu, F. (2017). Influences of chromium and cadmium on the development of black soldier fly larvae. Environ. Sci. Pollut. Res. Int. (Vol. 24, pp. 8637–8644). Springer Link. https://doi.org/10.1007/s11356-017-8550-3 DOI: https://doi.org/10.1007/s11356-017-8550-3

Biancarosa, I., Liland, N.S., Biemans, D., Araujo, P., Bruckner, C.G., Waagbo, R., Torstensen, B.E., Lock, E.J., Amlund, H. (2018). Uptake of heavy metals and arsenic in black soldier fly (Hermetia illucens) larvae grown on seaweed-enriched media. J. Sci. Food Agric. (Vol. 98, pp. 2176–2183). John Wiley & Sons. https://doi.org/10.1002/jsfa.8702 DOI: https://doi.org/10.1002/jsfa.8702

Ortel, J. (1991). Effects of lead and cadmium on chemical composition and total water content of the pupal parasitoid, Pimpla turionellae. Entomol. Exp. Appl. (Vol. 59, pp. 93-100). John Wiley & Sons. https://doi.org/10.1111/j.1570-7458.1991.tb01491.x DOI: https://doi.org/10.1111/j.1570-7458.1991.tb01491.x

Ortel, J. (1995). Effects of metals on the total lipid content in the gypsy moth (Lymantria dispar, Lymantriidae, Lepid) and its hemolymph. Bull. Environ. Contam. Toxicol. (Vol. 55, pp. 216-221). Springer Link. DOI: https://doi.org/10.1007/BF00203012

Barnett, J.W., Berger, R.S., Growth and Fatty Acid Composition of Bollworms, Heliothis zea (Lepidoptera: Noctuidae), as Affected by Dietary Fats. Annals of the Entomological Society of America (Vol. 63, Issue 4, pp. 917-924). Oxford University Press. https://doi.org/10.1093/aesa/63.4.917 DOI: https://doi.org/10.1093/aesa/63.4.917

Downloads

Published

2023-06-07

How to Cite

Loskutov, S., Puhalsky, Y., Sorokoumov, P., Ryabukhin, D., & Vorobyev, N. (2023). Changes in the level of consolidation of the fatty acid profile of Hermetia illucens larvae grown on a substrate contaminated with heavy metals. Potravinarstvo Slovak Journal of Food Sciences, 17, 503–513. https://doi.org/10.5219/1852