Fatty acids, their proportions, ratios, and relations in the selected muscles of the thigh and roast beef
DOI:
https://doi.org/10.5219/1765Keywords:
beef muscle, fatty acid, proportion, ratio, correlationAbstract
The study aimed to examine, compare, and statistically evaluate the quality of the beef thigh and roast beef muscle in terms of the profile of fatty acids in relation to human health. Musculus semimembranosus and m. quadriceps femoris of the thigh and m. longissimus dorsi of the roast beef were used for analysis to evaluate the fatty acid profile. Chemical analysis of the thigh and roast beef muscle samples was performed using Fourier transform infrared (FTIR) spectroscopy. The measured data were statistically processed according to descriptive characteristics, analysis of variance, and differences were tested using Scheffe´s test at a = 0.05. The SAS program package, version 8.2, was used to evaluate the results statistically. A statistically significant difference (p ≤0.05) was recorded in the dry matter proportion between m. quadriceps femoris and m. longissimus dorsi. A statistically significant difference was found in the intramuscular fat proportion, polyunsaturated fatty acid proportion, the ratio of polyunsaturated fatty acids to saturated fatty acids, the ratio of polyunsaturated fatty acids to monounsaturated fatty acids, as well as between m. semimembranosus and m. longissimus dorsi and between m. quadriceps femoris and m. longissimus dorsi. Strong, statistically significant (p ≤0.01, p ≤0.001) correlations were found mainly between intramuscular fat and polyunsaturated fatty acids, between intramuscular fat and the ratio of the polyunsaturated fatty acids to saturated fatty acids, between intramuscular fat and the ratio of polyunsaturated fatty acids to monounsaturated fatty acids. In conclusion, it was stated that the muscles of the thigh and roast beef of the young cattle are characterized by statistically significant differences in the proportion of fatty acids. The ratio of polyunsaturated fatty acids to saturated fatty acids meets the recommended values concerning maintaining the health of the food consumer. Still, the ratio of the n-6 to n-3 polyunsaturated fatty acids poses a risk concerning cardiovascular diseases.
Downloads
Metrics
References
OECD-FAO (Food and Agriculture Organization of the United Nations) (2021). Agricultural Outlook 2018 – 2027. Retrieved from http://www.fao.org/publications/card/en/c/I9166EN.
Henchion, M. M., McCarthy, M., & Resconi, V. C. (2017). Beef quality attributes: A systematic review of consumer perspectives. In Meat Science (Vol. 128, pp. 1–7). Elsevier BV. https://doi.org/10.1016/j.meatsci.2017.01.006 DOI: https://doi.org/10.1016/j.meatsci.2017.01.006
Janßen, D., & Langen, N. (2017). The bunch of sustainability labels – Do consumers differentiate? In Journal of Cleaner Production (Vol. 143, pp. 1233–1245). Elsevier BV. https://doi.org/10.1016/j.jclepro.2016.11.171 DOI: https://doi.org/10.1016/j.jclepro.2016.11.171
Miranda-de la Lama, G. C., Estévez-Moreno, L. X., Sepúlveda, W. S., Estrada-Chavero, M. C., Rayas-Amor, A. A., Villarroel, M., & María, G. A. (2017). Mexican consumers’ perceptions and attitudes towards farm animal welfare and willingness to pay for welfare friendly meat products. In Meat Science (Vol. 125, pp. 106–113). Elsevier BV. https://doi.org/10.1016/j.meatsci.2016.12.001 DOI: https://doi.org/10.1016/j.meatsci.2016.12.001
Sievert, K., Lawrence, M., Parker, C., Russell, C. A., & Baker, P. (2021). Who has a beef with reducing red and processed meat consumption? A media framing analysis. In Public Health Nutrition (Vol. 25, Issue 3, pp. 578–590). Cambridge University Press (CUP). https://doi.org/10.1017/s1368980021004092 DOI: https://doi.org/10.1017/S1368980021004092
Giovanelli, G., Buratti, S., Laureati, M., & Pagliarini, E. (2015). Evolution of physicochemical, morphological and aromatic characteristics of Italian PDO dry-cured hams during processing. In European Food Research and Technology (Vol. 242, Issue 7, pp. 1117–1127). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-015-2616-6 DOI: https://doi.org/10.1007/s00217-015-2616-6
Kelley, S. F. (2000). Meat Processing Technology (adapted: Gibson, A. 2019). Retrieed from https://slideplayer.com/slide/13185094/.
Badr, H. M. (2012). Infrared Spectroscopy for the Detection of Irradiated Meats. In Journal of American Science (Vol. 8, Issue 6, pp. 208–2014). Yale University.
Amamcharla, J. K., Panigrahi, S., Logue, C. M., Marchello, M., & Sherwood, J. S. (2010). Fourier transform infrared spectroscopy (FTIR) as a tool for discriminating Salmonella typhimurium contaminated beef. In Sensing and Instrumentation for Food Quality and Safety (Vol. 4, Issue 1, pp. 1–12). Springer Science and Business Media LLC. https://doi.org/10.1007/s11694-009-9090-4 DOI: https://doi.org/10.1007/s11694-009-9090-4
AOAC 983.18. (1983). Meat and Meat Products; Preparation of Test Sample Procedure.
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587 DOI: https://doi.org/10.4324/9780203771587
Komiya, Y., Mizunoya, W., Kajiwara, K., Yokoyama, I., Ogasawara, H., & Arihara, K. (2020). Correlation between skeletal muscle fiber type and responses of a taste sensing system in various beef samples. In Animal Science Journal (Vol. 91, Issue 1). Wiley. https://doi.org/10.1111/asj.13425 DOI: https://doi.org/10.1111/asj.13425
Listrat, A., Gagaoua, M., Normand, J., Andueza, D. J., Gruffat, D., Mairesse, G., Chesneau, G., Mourot, B.-P., Gobert, C., & Picard, B. (2020). Are there consistent relationships between major connective tissue components, intramuscular fat content and muscle fibre types in cattle muscle? In Animal (Vol. 14, Issue 6, pp. 1204–1212). Elsevier BV. https://doi.org/10.1017/s1751731119003422 DOI: https://doi.org/10.1017/S1751731119003422
Listrat, A., Gagaoua, M., Normand, J., Gruffat, D., Andueza, D., Mairesse, G., Mourot, B., Chesneau, G., Gobert, C., & Picard, B. (2020). Contribution of connective tissue components, muscle fibres and marbling to beef tenderness variability in longissimus thoracis, rectus abdominis, semimembranosus and semitendinosus muscles. In Journal of the Science of Food and Agriculture (Vol. 100, Issue 6, pp. 2502–2511). Wiley. https://doi.org/10.1002/jsfa.10275 DOI: https://doi.org/10.1002/jsfa.10275
Wegner, J., Albrecht, E., Fiedler, I., Teuscher, F., Papstein, H. J., & Ender, K. (2000). Growth- and breed-related changes of muscle fiber characteristics in cattle. In Journal of Animal Science (Vol. 78, Issue 6, p. 1485). Oxford University Press (OUP). https://doi.org/10.2527/2000.7861485x DOI: https://doi.org/10.2527/2000.7861485x
Li, X., Xie, X., Zhang, C., Zhen, S., & Jia, W. (2017). Role of mid- and far-infrared for improving dehydration efficiency in beef jerky drying. In Drying Technology (Vol. 36, Issue 3, pp. 283–293). Informa UK Limited. https://doi.org/10.1080/07373937.2017.1326129 DOI: https://doi.org/10.1080/07373937.2017.1326129
Dikeman, M. E. (Ed.). (2017). Ensuring safety and quality in the production of beef Volume 2. Burleigh Dodds Science Publishing. https://doi.org/10.4324/9781351114172 DOI: https://doi.org/10.19103/AS.2016.0009
Mwangi, F. W., Charmley, E., Gardiner, C. P., Malau-Aduli, B. S., Kinobe, R. T., & Malau-Aduli, A. E. O. (2019). Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. In Foods (Vol. 8, Issue 12, p. 648). MDPI AG. https://doi.org/10.3390/foods8120648 DOI: https://doi.org/10.3390/foods8120648
Pannier, L., Gardner, G. E., Pearce, K. L., McDonagh, M., Ball, A. J., Jacob, R. H., & Pethick, D. W. (2014). Associations of sire estimated breeding values and objective meat quality measurements with sensory scores in Australian lamb. In Meat Science (Vol. 96, Issue 2, pp. 1076–1087). Elsevier BV. https://doi.org/10.1016/j.meatsci.2013.07.037 DOI: https://doi.org/10.1016/j.meatsci.2013.07.037
Miner, J. L. (2004). The adipocyte as an endocrine cell1. In Journal of Animal Science (Vol. 82, Issue 3, pp. 935–941). Oxford University Press (OUP). https://doi.org/10.2527/2004.823935x DOI: https://doi.org/10.2527/2004.823935x
Vahmani, P., Mapiye, C., Prieto, N., Rolland, D. C., McAllister, T. A., Aalhus, J. L., & Dugan, M. E. R. (2015). The scope for manipulating the polyunsaturated fatty acid content of beef: a review. In Journal of Animal Science and Biotechnology (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s40104-015-0026-z DOI: https://doi.org/10.1186/s40104-015-0026-z
de Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., Uleryk, E., Budylowski, P., Schünemann, H., Beyene, J., & Anand, S. S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. In BMJ (p. h3978). BMJ. https://doi.org/10.1136/bmj.h3978 DOI: https://doi.org/10.1136/bmj.h3978
Mensink, R. P., Zock, P. L., Kester, A. D., & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. In The American Journal of Clinical Nutrition (Vol. 77, Issue 5, pp. 1146–1155). Elsevier BV. https://doi.org/10.1093/ajcn/77.5.1146 DOI: https://doi.org/10.1093/ajcn/77.5.1146
Garg, M. L., Blake, R. J., & Wills, R. B. H. (2003). Macadamia Nut Consumption Lowers Plasma Total and LDL Cholesterol Levels in Hypercholesterolemic Men. In The Journal of Nutrition (Vol. 133, Issue 4, pp. 1060–1063). Elsevier BV. https://doi.org/10.1093/jn/133.4.1060 DOI: https://doi.org/10.1093/jn/133.4.1060
Forouhi, N. G., Koulman, A., Sharp, S. J., Imamura, F., Kröger, J., Schulze, M. B., Crowe, F. L., Huerta, J. M., Guevara, M., Beulens, J. W., van Woudenbergh, G. J., Wang, L., Summerhill, K., Griffin, J. L., Feskens, E. J., Amiano, P., Boeing, H., Clavel-Chapelon, F., Dartois, L., … Wareham, N. J. (2014). Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. In The Lancet Diabetes & Endocrinology (Vol. 2, Issue 10, pp. 810–818). Elsevier BV. https://doi.org/10.1016/s2213-8587(14)70146-9 DOI: https://doi.org/10.1016/S2213-8587(14)70146-9
Khaw, K.-T., Friesen, M. D., Riboli, E., Luben, R., & Wareham, N. (2012). Plasma Phospholipid Fatty Acid Concentration and Incident Coronary Heart Disease in Men and Women: The EPIC-Norfolk Prospective Study. In M. B. Katan (Ed.), PLoS Medicine (Vol. 9, Issue 7, p. e1001255). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pmed.1001255 DOI: https://doi.org/10.1371/journal.pmed.1001255
Davis, H., Magistrali, A., Butler, G., & Stergiadis, S. (2022). Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. In Foods (Vol. 11, Issue 5, p. 646). MDPI AG. https://doi.org/10.3390/foods11050646 DOI: https://doi.org/10.3390/foods11050646
Butler, G., Ali, A. M., Oladokun, S., Wang, J., & Davis, H. (2021). Forage-fed cattle point the way forward for beef? In Future Foods (Vol. 3, p. 100012). Elsevier BV. https://doi.org/10.1016/j.fufo.2021.100012 DOI: https://doi.org/10.1016/j.fufo.2021.100012
Calder, P. C. (2015). Functional Roles of Fatty Acids and Their Effects on Human Health. In Journal of Parenteral and Enteral Nutrition (Vol. 39, Issue 1_suppl, pp. 18S-32S). Wiley. https://doi.org/10.1177/0148607115595980 DOI: https://doi.org/10.1177/0148607115595980
Vafeiadou, K., Weech, M., Altowaijri, H., Todd, S., Yaqoob, P., Jackson, K. G., & Lovegrove, J. A. (2015). Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. In The American Journal of Clinical Nutrition (Vol. 102, Issue 1, pp. 40–48). Elsevier BV. https://doi.org/10.3945/ajcn.114.097089 DOI: https://doi.org/10.3945/ajcn.114.097089
Raes, K., De Smet, S., & Demeyer, D. (2004). Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. In Animal Feed Science and Technology (Vol. 113, Issues 1–4, pp. 199–221). Elsevier BV. https://doi.org/10.1016/j.anifeedsci.2003.09.001 DOI: https://doi.org/10.1016/j.anifeedsci.2003.09.001
Prado, J., Prado, I., Visentainer, J., Rotta, P., Perotto, D., Moletta, J., Prado, I., & Ducatti, T. (2009). The effect of breed on the chemical composition and fatty acid profile of the <i>Longissimus dorsi</i> muscle of Brazilian beef cattle. In Journal of Animal and Feed Sciences (Vol. 18, Issue 2, pp. 231–240). The Kielanowski Institute of Animal Physiology and Nutrition, PAS. https://doi.org/10.22358/jafs/66387/2009 DOI: https://doi.org/10.22358/jafs/66387/2009
Scollan, N. D., Enser, M., Gulati, S. K., Richardson, I., & Wood, J. D. (2003). Effects of including a ruminally protected lipid supplement in the diet on the fatty acid composition of beef muscle. In British Journal of Nutrition (Vol. 90, Issue 3, pp. 709–716). Cambridge University Press (CUP). https://doi.org/10.1079/bjn2003933 DOI: https://doi.org/10.1079/BJN2003933
PCAS. (2021). PCAS Certified Pasturefed. Retrieved from http://www.pcaspasturefed.com.au/.
Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. In Annual Review of Food Science and Technology (Vol. 9, Issue 1, pp. 345–381). Annual Reviews. https://doi.org/10.1146/annurev-food-111317-095850 DOI: https://doi.org/10.1146/annurev-food-111317-095850
Vahmani, P., Ponnampalam, E. N., Kraft, J., Mapiye, C., Bermingham, E. N., Watkins, P. J., Proctor, S. D., & Dugan, M. E. R. (2020). Bioactivity and health effects of ruminant meat lipids. Invited Review. In Meat Science (Vol. 165, p. 108114). Elsevier BV. https://doi.org/10.1016/j.meatsci.2020.108114 DOI: https://doi.org/10.1016/j.meatsci.2020.108114
Pethick, D. W., Hocquette, J.-F., Scollan, N. D., & Dunshea, F. R. (2021). Review: Improving the nutritional, sensory and market value of meat products from sheep and cattle. In Animal (Vol. 15, p. 100356). Elsevier BV. https://doi.org/10.1016/j.animal.2021.100356 DOI: https://doi.org/10.1016/j.animal.2021.100356
Ribas‐Agustí, A., Díaz, I., Sárraga, C., García‐Regueiro, J. A., & Castellari, M. (2019). Nutritional properties of organic and conventional beef meat at retail. In Journal of the Science of Food and Agriculture (Vol. 99, Issue 9, pp. 4218–4225). Wiley. https://doi.org/10.1002/jsfa.9652 DOI: https://doi.org/10.1002/jsfa.9652
Arshad, M. S. (Ed.). (2018). Meat Science and Nutrition. InTech. https://doi.org/10.5772/intechopen.71954 DOI: https://doi.org/10.5772/intechopen.71954
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.