Development of a two-level control system for the analysis of the composition of meat products

Authors

  • Natalya Vostrikova V. M. Gorbatov Federal Research Center for Food Systems of RAS, Laboratory Center for food and feed testing, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +74956767981 https://orcid.org/0000-0002-9395-705X
  • Daniil Khvostov V. M. Gorbatov Federal Research Center for Food Systems of RAS, Laboratory of molecular biology and bioinformatics, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +74956767981 https://orcid.org/0000-0002-3445-4559
  • Anatoly Zherdev Research Center of Biotechnology RAS, Laboratory of immunobiochemistry, Leninsky prospect, 33, 119071, Moscow, Russia, Tel.: +74959542804 https://orcid.org/0000-0003-3008-2839
  • Mikhail Minaev V.M. Gorbatov Federal Research Center for Food Systems of RAS, Laboratory of molecular biology and bioinformatics, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +74956767981
  • Elena Zvereva Research Center of Biotechnology RAS, Laboratory of immunobiochemistry, Leninsky prospect, 33, 119071, Moscow, Russia, Tel.: +74959542804 https://orcid.org/0000-0002-8709-2061

DOI:

https://doi.org/10.5219/1632

Keywords:

biomarker, LC-MS/MS, PCR, species specificity

Abstract

Because of the increased demand for processed meat, there is an urgent need to introduce specific identification methods. Strategies such as molecular genetics and the physical condition of meat are used to quickly explore multi-component products. However, a single methodology does not always unambiguously classify a product as counterfeit. In laboratory practice, as a rule, screening techniques are rarely used in the first stage, followed by arbitration. This work aimed to study individual methodologies using artificially falsified meat samples as examples and to identify their composition based on muscle tissue. For the experiments, the three most common types of raw meat were selected: pork, beef, and chicken. The calculation of the content of muscle tissue was carried out according to the BEFFE method. The study of muscle protein was carried out by ICA, ELISA, PCR, microstructural analysis, and mass spectrometric identification. In this connection, we proposed a multilevel control system for multicomponent meat products. Both classical methodologies, such as calculation by prescription bookmarks (BEFFE) and microstructural analysis, and approaches of highly sensitive methodologies, such as identification of muscle tissue by marker peptides (LC/MS-MRM) and semi-quantitative PCR analysis, were evaluated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Akhremko, A., Fedulova, L. 2021. Comparative study of weaning pigs' muscle proteins using two-dimensional electrophoresis. Potravinarstvo Slovak Journal of Food Sciences, vol. 15, no. 1, p. 52-57. https://doi.org/10.5219/1449 DOI: https://doi.org/10.5219/1449

Akhremko, A., Vasilevskaya, E., Fedulova, L. 2020. Adaptation of two-dimensional electrophoresis for muscle tissue analysis. Potravinarstvo Slovak Journal of Food Sciences, vol. 14, no. 1, p. 595-601. https://doi.org/10.5219/1380 DOI: https://doi.org/10.5219/1380

Ali, M., Kashif, M., Uddin, K., Hashim, U., Mustafa, S., Man, C. 2012. Species authentication methods in foods and feeds: the present, past, and future of halal forensics. Food Analytical Methods, vol. 5, no. 5, p. 935-955. https://doi.org/10.1007/s12161-011-9357-3 DOI: https://doi.org/10.1007/s12161-011-9357-3

Bottero, M., Dalmasso, A. 2011. Animal species identification in food products: Evolution of biomolecular methods. The Veterinary Journal, vol. 190, no. 1, p. 34-38. https://doi.org/10.1016/j.tvjl.2010.09.024 DOI: https://doi.org/10.1016/j.tvjl.2010.09.024

Cai, Y., Li, X., Lv, R., Yang, J., Li, J., He, Y., Pan, L. 2014. Quantitative analysis of pork and chicken products by droplet digital PCR. BioMed research international, vol. 2014, 6 p. https://doi.org/10.1155/2014/810209 DOI: https://doi.org/10.1155/2014/810209

Calvo, J., Zaragoza, P., Osta, R. 2001. A quick and more sensitive method to identify pork in processed and unprocessed food by PCR amplification of a new specific DNA fragment. Journal of animal science, vol. 79, no. 8, p. 2108-2112. https://doi.org/10.2527/2001.7982108x DOI: https://doi.org/10.2527/2001.7982108x

Chernukha, I. M., Vostrikova, N. L., Khvostov, D. V., Zvereva, E. A., Taranova, N. A., Zherdev, A. V. 2019. Methods of identification of muscle tissue in meat products. prerequisites for creating a multi–level control system. Theory and practice of meat processing, vol. 4, no. 3, p. 32-40. https://doi.org/10.21323/2414-438X-2019-4-3-32-40 DOI: https://doi.org/10.21323/2414-438X-2019-4-3-32-40

Claydon, A., Grundy, H., Charlton, A., Romero, M. 2015. Identification of novel peptides for horse meat speciation in highly processed foodstuffs. Food Addit Contam—Part A Chem Anal Control Expo Risk Asses, vol. 32, no. 10, p. 1718-1729. https://doi.org/10.1080/19440049.2015.1075256 DOI: https://doi.org/10.1080/19440049.2015.1075256

Escriba-Perez, C., Baviera-Puig, A., Buitrago-Vera, J., Montero-Vicente, L. 2017. Consumer profile analysis for different types of meat in Spain. Meat science, vol. 129, p. 120-126. https://doi.org/10.1016/j.meatsci.2017.02.015 DOI: https://doi.org/10.1016/j.meatsci.2017.02.015

Federal Ministry of Food and Agriculture. 2021. Available at: https://www.bmel.de.

Floren, C., Wiedemann, I., Brenig, B., Schütz, E., Beck, J. 2015. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food chemistry, vol. 173, p. 1054-1058. https://doi.org/10.1016/j.foodchem.2014.10.138 DOI: https://doi.org/10.1016/j.foodchem.2014.10.138

Fornal, E., Montowska, M. 2019. Species-specific peptide‐based liquid chromatography–mass spectrometry monitoring of three poultry species in processed meat products. Food Chem., vol. 283, p. 489-498. https://doi.org/10.1016/j.foodchem.2019.01.074 DOI: https://doi.org/10.1016/j.foodchem.2019.01.074

Grundy, H., Reece, P., Buckley, M., Solazzo, C., Dowle, A., Ashford, D., Charlton, A., Wadsley, M., Collins, M. 2016. A mass spectrometry method for the determination of the species of origin of gelatine in foods and pharmaceutical products. Food Chem., vol. 190, p. 276-284. https://doi.org/10.1016/j.foodchem.2015.05.054 DOI: https://doi.org/10.1016/j.foodchem.2015.05.054

He, H., Hong, X., Feng, Y., Wang, Y., Ying, J., Liu, Q., Qian, Y., Zhou, X., Wang, D. 2015. Application of quadruple multiplex PCR detection for beef, duck, mutton and pork in mixed meat. Journal of Food and Nutrition Research, vol. 3, p. 392-398. https://doi.org/10.12691/jfnr-3-6-6 DOI: https://doi.org/10.12691/jfnr-3-6-6

Hendrickson, O. D., Zvereva, E. A., Vostrikova, N. L., Chernukha, I. M., Dzantiev, B. B., Zherdev, A. V. 2021. Lateral flow immunoassay for sensitive detection of undeclared chicken meat in meat products. Food Chem., vol. 15, p. 344. https://doi.org/10.1016/j.foodchem.2020.128598 DOI: https://doi.org/10.1016/j.foodchem.2020.128598

Khvostov, D. V., Vostrikova, N. L. Zherdev, A. V., Zvereva, E. A., Kurzova, A. A. 2019. Identifikatsiya i kolichestvennoye opredeleniye myshechnoy tkani na osnove kontrolya prototipicheskikh peptidov s ispol'zovaniyem metoda monitoringa zadannykh reaktsiy (Quantitative identification of muscular tissue by the means of protototic peptides using the multiple reaction monitoring method). Analitika i kontrol’, vol. 23, no. 4, p. 580-586. http://doi.org/10.15826/analitika.2019.23.4.012 (In Russian) DOI: https://doi.org/10.15826/analitika.2019.23.4.012

Khvostov, D., Vostrikova, N., Chernukha, I. 2020. Comparison of heat-stable peptides using a multiple-reaction monitoring method to identify beef muscle tissue. Potravinarstvo Slovak Journal of Food Sciences, vol. 14, no. 1, p. 149-155. https://doi.org/10.5219/1317 DOI: https://doi.org/10.5219/1317

Khvylya, S., Pchelkina, V., Burlakova, S. 2012. Primeneniye gistologicheskogo analiza pri issledovanii myasnogo syr'ya i gotovykh produktov (The use of histological analysis in the study of raw meat and finished products). Tekhnika i tekhnologiya pishchevykh proizvodstv, vol. 3, p 132-138. (In Russian)

Kulikovskii, A. V., Vostrikova, N. L., Chernukha, I. M., Khvostov, D. V. 2019. Quantitative identification of muscle tissue by means of biomarker peptides by using method of multiple reaction monitoring. Oriental J. of Chemistry, vol. 35, no. 4, p. 1327-1331. http://doi.org/10.13005/ojc/350411. DOI: https://doi.org/10.13005/ojc/350411

Kurbakov, K. A., Konorov, E. A., Minaev, M. Y., Kuznetsova, O. A., 2019. Multiplex real-time PCR with HRM for detection of Lactobacillus sakei and Lactobacillus curvatus in food samples. Food technology and biotechnology, vol. 57, no. 1, p. 97-104. https://doi.org/10.17113/ftb.57.01.19.5983 DOI: https://doi.org/10.17113/ftb.57.01.19.5983

Li, Y., Zhang, Y., Li, H., Zhao, W., Guo, W., Wang, S. 2018. Simultaneous determination of heat stable peptides for eight animal and plant species in meat products using UPLC-MS/MS method. Food Chem, vol. 245, p. 125-131. https://doi.org/10.1016/j.foodchem.2017.09.066 DOI: https://doi.org/10.1016/j.foodchem.2017.09.066

Montowska, M., Fornal, E. 2017. Label-free quantification of meat proteins for evaluation of species composition of processed meat products. Food Chem., vol. 237, no. 15, p. 1092-1100. https://doi.org/10.1016/j.foodchem.2017.06.059 DOI: https://doi.org/10.1016/j.foodchem.2017.06.059

Montowska, M., Fornal, E. 2019. Absolute quantification of targeted meat and allergenic protein additive peptide markers in meat products. Food Chem, vol. 274, p. 857-864. https://doi.org/10.1016/j.foodchem.2018.08.131 DOI: https://doi.org/10.1016/j.foodchem.2018.08.131

Moore, J., Spink, J., Lipp, M. 2012. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. Journal of food science, vol. 77, no. 4, p. 118-126. https://doi.org/10.1111/j.1750-3841.2012.02657.x DOI: https://doi.org/10.1111/j.1750-3841.2012.02657.x

Pan, X.-D., Chen, J., Chen, Q., Huang, B.-F., Han, J.-L. 2018. Authentication of pork in meat mixtures using PRM mass spectrometry of myosin peptides. RSC Adv., vol. 8, no. 20, p. 11157-11162. https://doi.org/10.1039/C8RA00926K DOI: https://doi.org/10.1039/C8RA00926K

Sentandreu, M., Fraser, P., Halket, J., Patel, R., Bramley, P. 2010. A proteomic based approach for detection of chicken in meat mixes. Journal of Proteome Research, vol. 9, no. 7, p. 3374-3383. https://doi.org/10.1021/pr9008942 DOI: https://doi.org/10.1021/pr9008942

Skyline software. 2021. Available at: https://skyline.ms/project/home/software/Skyline/begin.view.

Stachniuk, A., Sumara, A., Montowska, M., Fornal, E. 2019. Liquid chromatography–mass spectrometry bottom-up proteomic methods in animal species analysis of processed meat for food authentication and the detection of adulterations. Mass Spectrometry Reviews, vol. 00, p. 1-28. https://doi.org/10.1002/mas.21605 DOI: https://doi.org/10.1002/mas.21605

Thienes, C., Masiri, J., Benoit, L. A., Barrios-Lopez, B., Samuel, S., Meshgi, M., Cox, D., Dobritsa, A., Nadala, C., Samadpour, M. 2019. Quantitative detection of chicken and turkey contamination in cooked meat products by ELISA. Journal of AOAC International, vol. 102, no. 2, p. 557-563. https://doi.org/10.5740/jaoacint.18-0136 DOI: https://doi.org/10.5740/jaoacint.18-0136

Vostrikova, N., Kulikovskiy, A., Chernukha, I., Kovalev, L., Savchuk, S. 2017. Opredeleniye belkov myshechnoy tkani metodami 2D elektroforeza i vremyaproletnoy mass-spektrometrii (Determination of muscle tissue proteins by 2D electrophoresis and time-of-flight mass spectrometry.). Zhurnal analiticheskoy khimii, vol. 72, p. 932-943. https://doi.org/10.7868/S0044450217100103 (In Russian) DOI: https://doi.org/10.1134/S1061934817100173

Wang, G.-J., Zhou, G.-Y., Ren, H.-W., Xu, Y., Yang, Y., Guo, L.-H., Liu, N. 2018. Peptide biomarkers identified by LC–MS in processed meats of five animal species. J Food Comp Anal, vol. 73, p. 47-54. https://doi.org/10.1016/j.jfca.2018.07.004 DOI: https://doi.org/10.1016/j.jfca.2018.07.004

Zvereva, E. A., Byzova, N. A., Hendrickson, O. D., Popravko, D. S., Belichenko, K. A., Dzantiev, B. B., Zherdev, A. V. 2020b. Immunochromatographic detection of myoglobin as a specific biomarker of porcine muscle tissues in meat products. Applied Sciences, vol. 10, no. 21, p. 7437. https://doi.org/10.3390/app10217437 DOI: https://doi.org/10.3390/app10217437

Zvereva, E. A., Kovalev, L. I., Ivanov, A. V., Kovaleva, M. A., Zherdev, A. V., Shishkin, S. S., Lisitsyn, A. B., Chernukha, I. M., Dzantiev, B. B. 2015. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products. Meat Science, vol. 105, p. 46-52. https://doi.org/10.1016/j.meatsci.2015.03.001 DOI: https://doi.org/10.1016/j.meatsci.2015.03.001

Zvereva, E. A., Popravko, D. S., Hendrickson, O. D., Vostrikova, N. L., Chernukha, I. M., Dzantiev, B. B., Zherdev, A. V. 2020a. Lateral flow immunoassay to detect the addition of beef, pork, lamb, and horse muscles in raw meat mixtures and finished meat products. Foods, vol. 9, no. 11, p. 1662. https://doi.org/10.3390/foods9111662 DOI: https://doi.org/10.3390/foods9111662

Published

2021-10-28

How to Cite

Vostrikova, N., Khvostov, D., Zherdev, A., Minaev, M., & Zvereva, E. (2021). Development of a two-level control system for the analysis of the composition of meat products. Potravinarstvo Slovak Journal of Food Sciences, 15, 1005–1017. https://doi.org/10.5219/1632