Effect of process parameters on the functional and physicochemical properties of extrudates enriched with starch-based nut flour
DOI:
https://doi.org/10.5219/1296Keywords:
extrudate, process, starch, walnut, parameterAbstract
Widening the range of products produced on the basis of agricultural raw materials and improving the quality of these products and increasing their nutritional value ”‹”‹represent urgent challenges. Therefore, the production of new mass consumption products with high nutritional and biological value brings to the fore the use of local nut flour as an enriching supplement in innovative technological processes. The high nutritional value of nuts (nuts, walnuts, and peanuts) is due to their chemical composition, including lipids, a large amount of soluble proteins that are well absorbed by the human body, sufficiently large quantities of vitamin B1 and a small amount of vitamins PP and E. It is known that in peanut grains, lipids have a balanced composition of fats and acids, as well as sufficiently large amounts of essential amino acids, which makes their protein composition closer to that of animal proteins. This study considers the influence of thermoplastic extrusion parameters on the functional and physicochemical properties of extrudates in their formation process. The technological and design parameters of the process and their variation ranges are based on studies conducted on model systems. The ratio of the extrusion mixture components (formulation) is also developed. Based on the methodology for multifactorial experimental design, the variation of the volume weights, expansion rates, and mechanical specific energy expenditure of porous extrudates enriched with starch-based nut flour is studied. It has been established that the best quality indicators of the products are achieved with the minimum volume weight and the maximum expansion rate.
Downloads
Metrics
References
Ačkar, Đ., Jozinović, A., Babić, J., Miličević, B., Balentić, J. P., Šubarić, D. 2018. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Journal Innovative Food Science & Emerging Technologies, vol. 47, p. 517-524. https://doi.org/10.1016/j.ifset.2018.05.004 DOI: https://doi.org/10.1016/j.ifset.2018.05.004
Arivalagan, M., Manikantan, M. R., Yasmeen, A. M., Sre¬ejith, S., Balasubramanian, D., Hebbar, K. B., .Kanade, S. R. 2018. Physiochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium based extrudates. Journal LWT, Engineering in Agriculture, Environment and Food, vol. 89, p. 171-178. 102811. https://doi.org/10.1016/j.lwt.2017.10.049 DOI: https://doi.org/10.1016/j.lwt.2017.10.049
Bisharat, G. I., Oikonomopoulou, V. P., Panagiotou, N. M., Krokida, M. K., Maroulis, Z. B. 2013. Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables. Journal Food Research International, vol. 53, p. 1-14. https://doi.org/10.1016/j.foodres.2013.03.043 DOI: https://doi.org/10.1016/j.foodres.2013.03.043
Carvalho, Carlos W. P., Takeiti, C. Y., Onwulata, C. I., Pordesimo, L. O. 2010. Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. Journal of Food Engineering, vol. 98, p. 103-109. https://doi.org/10.1016/j.jfoodeng.2009.12.015 DOI: https://doi.org/10.1016/j.jfoodeng.2009.12.015
Da Silvateba, C., Da Silva, E. M. M., Chávez, D. W. H. C., Ascheri, J. L. R. 2017. Effects of whey protein concentrate, feed moisture and temperature on the physico-chemical characteristics of a rice-based extruded flour. Journal Food chemistry, vol. 228, p. 287-296. https://doi.org/10.1016/j.foodchem.2017.01.145 DOI: https://doi.org/10.1016/j.foodchem.2017.01.145
Grachev, Y. P. 1979. Mathematical methods of experimental design. Moskow "Food Industry", p. 21.
GOST 2874-82 Drinking water, TU 15-1142-91.
GOST 7697-82 Corn starch, TU 15-1142-91.
GOST 6002-69 Corn cereals, TU 15-1142-91.
GOST 13830-84 Cooking salt, TU 15-1142-91.
Harper, J. M. 1986. Extrusion texturization of Foods. Journal Food Technology, vol. 40, no. 3, p. 72-75.
Jacques-Fajardo, G. E., Prado-Ramírez, R., Arriola-Guevara, E., Carrillo, E. P., Espinosa-Andrews, H., Guatemala Morales, G. M. 2017. Physical and hydration properties of expanded extrudates from a blue corn, yellow pea and oat bran blend. Journal LWT, vol. 84, p. 804-814. https://doi.org/10.1016/j.lwt.2017.06.046 DOI: https://doi.org/10.1016/j.lwt.2017.06.046
Janve, M., Singhal, R. S. 2018. Fortification of puffed rice extrudates and rice noodles with different calcium salts: Physicochemical properties and calcium bioaccessibility. Journal LWT, vol. 97, p. 67-75. https://doi.org/10.1016/j.lwt.2018.06.030 DOI: https://doi.org/10.1016/j.lwt.2018.06.030
Li, X., Masatcioglu, M. T., Koksela, F. 2019. Physical and functional properties of wheat flour extrudates produced by nitrogen injection assisted extrusion cooking. Journal of Cereal Science, vol. 89, 2019.102811 https://doi.org/10.1016/j.jcs.2019.102811 DOI: https://doi.org/10.1016/j.jcs.2019.102811
Beck, S. M., Knoerzer, K., Foerster, M., Mayo, S., Philipp, C., Arcot, J. 2018. Low moisture extrusion of pea protein and pea fibre fortified rice starch blends. Journal of Food Engineering, vol. 231, p. 61-71. https://doi.org/10.1016/j.jfoodeng.2018.03.004 DOI: https://doi.org/10.1016/j.jfoodeng.2018.03.004
Meuser F. 1984. Kochexstrusion von Starken. Starch/Starke, vol. 36, p. 194-199. https://doi.org/10.1002/star.19840360603 DOI: https://doi.org/10.1002/star.19840360603
Saldanha do Carmo, C., Varela, P., Poudroux, C., Dessev, T., Myhrer, K., Rieder, A., Zobel, H., Sahlstrøm, S., Knutsen, S. H. 2019. The impact of extrusion parameters on physicochemical, nutritional and sensorial properties of expanded snacks from pea and oat fractions. Journal LWT, vol. e112, 108252 https://doi.org/10.1016/j.lwt.2019.108252 DOI: https://doi.org/10.1016/j.lwt.2019.108252
Sharma, R., Srivastava, T., Saxena, D. C 2019. Valorization of deoiled rice bran by development and process optimization of extrudates. Journal of Food Engineering, vol. 12, no. 2, p. 173-180. https://doi.org/10.1016/j.eaef.2018.12.005 DOI: https://doi.org/10.1016/j.eaef.2018.12.005
Sesikashvili O., Zverev S., Berulava I. 2018. Nuts - Properties. Recycling. Using. Lambert Academic Publishing, Monography. p. 146 стр. ISBN-13:978-613-9-89854-1
Sushil, S. K., Poonam, S, Kasiviswanathan, M. 2019. Modeling and optimizing the effect of extrusion processing parameters on nutritional properties of soy white flakes-based extrudates using response surface methodology. Journal Animal feed science and technology, vol. 254, 114197. https://doi.org/10.1016/j.anifeedsci.2019.06.001 DOI: https://doi.org/10.1016/j.anifeedsci.2019.06.001
Skamniotis, C .G., Patel, Y., Elliott, M., Charalambides, M. N. 2018. Toughening an d stiffening of starch food extrudates through the addition of cellulose fibres and minerals. Journal Food Hydrocolloids, vol. 84, p. 515-528. https://doi.org/10.1016/j.foodhyd.2018.06.004 DOI: https://doi.org/10.1016/j.foodhyd.2018.06.004
Tsagareishvili, D., Sesikashvili, O., Dadunashvili, G., Sakhanberidze, N., Tsagareishvili, S. 2019. The influence of the moisture content of raw materials on the structuring of the extrudates. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, p. 895-905. https://doi.org/10.5219/1189 DOI: https://doi.org/10.5219/1189
Van Lengerich, B., Meuser, F., Pfaller, W. 1989. Extrusion cooking of Wheat products. In Pomeralz, Y. Whet Uni Qui. Structure, transition of starch paste processing and use properties and products. St. Paul, Minnesota, USA : American Association of cereal chemists, p. 395-419.
Wang, S., Gu, B.-J., Ganjyal, G. M. 2019. Impacts of the inclusion of various fruit pomace types on the expansion of corn starch extrudates. Journal LWT, vol. 110, p. 223-230. https://doi.org/10.1016/j.lwt.2019.03.094 DOI: https://doi.org/10.1016/j.lwt.2019.03.094
Zhang, J., Liu, L., Jiang, Y., Faisal, S., Wang, Q. 2020. A new insight into the high-moisture extrusion process of peanut protein: From the aspect of the orders and amount of energy input. Journal of Food Engineering, vol. 264, https://doi.org/10.1016/j.jfoodeng.2019.07.015 DOI: https://doi.org/10.1016/j.jfoodeng.2019.07.015
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.