Characterization of bioactive compounds from monascus purpureus fermented different cereal substrates


  • Eva Ivanišová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Plant Storage and Processing, Tr. A. Hlinku 2, 949 76 Nitra
  • Martin Rajtar Mycoforest, Velčice 133, 95171, Slovakia
  • Marián Tokár Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Plant Storage and Processing, Tr. A. Hlinku 2, 949 76 Nitra
  • Helena Frančáková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Plant Storage and Processing, Tr. A. Hlinku 2, 949 76 Nitra Slovakia
  • Štefan Dráb Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Plant Storage and Processing, Tr. A. Hlinku 2, 949 76 Nitra
  • Maciej Kluz Rzeszów University, Faculty of Biology and Agriculture, Zelwerowicza St. 4, 35-601 Poland
  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra



antioxidant activity, fat content, protein content, dietary fiber, Monascus


Solid-state fermenting of cereals by Monascus is interesting strategy to produce cereals with more beneficial components.  The objective of this study was to determine selected primary and secondary metabolites in cereals (rice, wheat, barley, sorghum, corn, buckwheat) fermented by Monascus purpreus and subsequently compare amount of these compounds with control sample (cereals without Monascus). In fermented cereals was determined higher protein, fat, reducing sugars, crude fiber and ash content with compare to non-fermented cereals. The antioxidant activity measured by DPPH assay, ABTS assay as well as reducing power assay was also higher in fermented Monascus cereals with the best results in rice (3.09 ±0.02; 62.9 ±2.24; 43.19 ±2.07 mg TEAC per g of dry weight). Sample of fermented rice contained the highest level of total polyphenols (15.31 ±3.62 mg GAE per g of dry weight), total flavonoids (1.65 mg QE per g of dry weight) and total phenolic acids (9.47 ±0.56 mg CAE per g of dry weight). In fermented cereals was also determined higher contact of reducing sugars (highest value in rice 246.97 ±7.96 mg GE per g), proteins (highest value in buckwheat 28.47 ±1.24%), ash (highest value in sorghum 2.74 ±0.08%) and fat (highest value in corn 4.89 ±0.03%) with compare to non-fermented samples. Results of crude fiber content of both - fermented and non-fermented cereals were balanced with similar values. Results of this study shown that Monascus purpureus fermented cereal substrates might be a potential sources of several bioactive compounds in food products.


Download data is not yet available.


Metrics Loading ...


AACC methods 8th, E.d., 1996. Methods 08-01, 44-05A, 46-13, 54-20. St. Paul, MN: American Association of Cereal Chemists.

Blanc, P. J., Laussac, J. P., Le Bars, J., Le Bars, P., Loret, M. O., Pareilleux, A., Prome, D., Prome, J. C., Santerre, A. L., Goma, G. 1995. Characterization of monascidin A from Monascus as citrinin. International Journal of Food Microbiology, vol. 27, no. 2-3, p. 201-213. DOI:

Cheng, J., Bong-Keun, Ch., Yang, S., Suh, J. W. 2016. Effect of fermentation on the antioxidant activity of rice bran by Monascus pilosus KCCM60084. Journal of Applied Biological Chemistry, vol. 59, no. 1, p. 57-62. DOI:

Cheng, M. J., Wu, M. D., Chen, I. S., Tseng, M., Yuan, G. F. 2011. Chemical constituents from the fungus Monascus purpureus and their antifungal activity. Phytochemistry Letters, vol. 4, no. 3, p. 372-376. DOI:

Childress, L., Gay, A., Zargar, A., Ito, M. K., 2013. Review of red yeast rice content and current Food and Drug Administration oversight. Journal of Clinical Lipidology, vol. 7, no. 2, p. 117-122. PMid:23415430 DOI:

Farmakopea Polska, 1999. The Polish Farmaceutical Society [online] s.a. [cit.2017-01-25] Available at:

Hajjaj, H., François, J. M., Goma, G., Blanc, P. J. 2012. Effect of amino acids on red pigments and citrinin production in Monascus ruber. Journal of Food Science, vol. 77, no. 3, p. 156-159. PMid:22384962 DOI:

Handa, C. L., Couto, U. R., Vicensot, A. H., Geogetti, S. R., Ida, E. I. 2014. Optimisation of soy flour fermentation parametrs to produce β-glucosidase for bioconversion into aglycones. Food Chemistry, vol. 152, p. 56-65. PMid:24444906 DOI:

Huynh, N. T., Camp, J. V., Smagghe, G., Raes, K. 2014. Improved release and metabolism of flavonoid by stewed fermentation process: A review. International Journal of Molecular Science, vol. 15, no. 1, p. 19369-19388. PMid:25347275 DOI:

Kennedy, J., Auclair, K., Kendrew, S. G., Park, C., Vederas, J. C., Hutchinson, C. R. 1999. Modulation of polyketide synthase activity by accerrory proteins during lovastatin biosynthesis. Science, vol. 284, no. 54118, p. 1136-1372. DOI:

Lee, Y. L., Yang, J. H., Mau, J. L. 2008. Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chemistry, vol. 106, no. 3, p. 1128-1137. DOI:

Mostafa, M. E., Abbady, M. S. 2014. Secondary metabolites and bioactivity of the Monascus pigment: Review Article. Global Journal of Biotechnology and Biochemistry, vol. 9, no. 1, p. 1-13.

Oyaizu, M. 1986. Studies on products of browning reaction - antioxidative activities of products of browning reaction prepared from glucoseamine. Japanese Journal of Nutrition, vol. 44, p. 307-314. DOI:

Pitt, J. I., Hocking A. D. 1997. Fungi and food spoilage. 2nd ed. London : Chapman and Hall. 519 p. ISBN 9781461563914. DOI:

Purwar, S., Gupta, E., Zaki, S. 2016. Effect of solid fermentation on nutritive values of rice by Monascus spp. Bioved, vol. 27, p. 185-189.

Quettier-Deleu, Ch., Gressier, B., Vasseur, J., Dine, Claude Brunet, C., Luyckx, M., Cazin, M., Cazin, J. C., Bailleul, F., Trotin, F. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, vol. 72, no. 1-2, p. 35-42. DOI:

Rajasekaran, A., Kalaivani, M. 2011. Hypolipidemic and antioxidant activity of aqueous extract of Monascus purpureus fermented Indian rice in high cholesterol diet fed rats. Turk Journal of Medical Sciences, vol. 41, no. 1, p. 25-32.

Razak, D. L. A., Rashid, N. Y., Jamaluddin, A., Sharifudin, S. A., Long, K. 2015. Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus. Biocatalysis and Agricultural Biotechnology, vol. 4, no. 1, p. 33-38. DOI:

Re, R. N., Pellegrini, A., Proteggente, A., Pannala, M., Yang, R., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, vol. 26, no. 9-10, p. 1231-1237. DOI:

Sánchés­Moreno, C., Larrauri, A., Saura˗Calixto, F. 1998. A procedure to measure the antioxidant efficiency of polyphenols. Journal of the Science of Food and Agriculture, vol. 76, no. 2, p. 270-276. DOI:<270::AID-JSFA945>3.0.CO;2-9

SAS, 2009. Users Guide Version 9. 2. SAS/STAT (r) SAS [online] s.a. [cit.2017-01-25] Available at:

Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Agricultural, vol. 6, p. 144-158.

Srianta, I., Harijono, L. 2015. Monascus - fermented sorghum: pigments and monakoli K produced by Monascus purpureus on whole grain, dehulled grain and bran substrates. International Food Research Journal, vol. 22, no. 1, p. 377-382.

Srianta, I., Ristiarini, S., Nugerhani, I., Sen, S. K., Zhang, B. B., Xu, G. R., Blanc, P. J. 2014. Recent research and development of Monascus fermentation products. Food Research Journal, vol. 21, no. 1, p. 1-12.

Srianta, I., Zubaidah, E., Estiasih, T., Yamada, M., Harijon, O. 2016. Comparison of Monascus purpureus growth pigment production and composition on different cereal substrates with solid state fermentation. Biocatalysis and Agricultural Biotechnology, vol. 7, p. 181-186. DOI:

Tseng, Y. H., Yang, J. H., Chen, C. H. and Mau, J. L. 2011. Quality and antioxidant properties of anka-enriched bread. Journal of Food Processing and Preservation, vol. 35, no. 4, p. 518-523. DOI:

Venkateswaran, V. 2010. Characterisation of bioactive molecules from Monascus purpureus fermented finger millet (Eleusine ciracana) : Dissertation theses. Mysore, 181 p.

Vidyalakshmi, R., Paranthaman, R., Murugesh, S., Singaravadivel, K. 2009. Microbial bioconversion of rice broken to food grade pigments. Global Journal of Biotechnology and Biochemistry, vol. 4, no. 2, p.84-87.

Wan, N. S. 2005. Experiment no. 4A, Glucose assay by dinitrosalicylic colorimetric method. [online] s.a. [cit.2017-01-25] Available at:

Yang, C. W., Mousa, S. A. 2012. The effect of red yeast rice (Monascus purpureus) in dyslipidemia and other disorders. Complementary Therapies in Medicine, vol. 20, no. 6, p. 466-474. PMid:23131380 DOI:

Yang, J. H., Tseng, Y. H., Lee, Y. L., Mau, J. L. 2006. Antioxidant properties of metabolic extract from monascal rice. LWT-Food Science and technology, vol. 39, p. 740-747. DOI:




How to Cite

Ivanišová, E. ., Rajtar, M. ., Tokár, M. ., Frančáková, H. ., Dráb, Štefan ., Kluz, M. ., & Kačániová, M. . (2017). Characterization of bioactive compounds from monascus purpureus fermented different cereal substrates. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 183–189.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >>