Characterization of bioactive compounds from monascus purpureus fermented different cereal substrates
DOI:
https://doi.org/10.5219/722Keywords:
antioxidant activity, fat content, protein content, dietary fiber, MonascusAbstract
Solid-state fermenting of cereals by Monascus is interesting strategy to produce cereals with more beneficial components. The objective of this study was to determine selected primary and secondary metabolites in cereals (rice, wheat, barley, sorghum, corn, buckwheat) fermented by Monascus purpreus and subsequently compare amount of these compounds with control sample (cereals without Monascus). In fermented cereals was determined higher protein, fat, reducing sugars, crude fiber and ash content with compare to non-fermented cereals. The antioxidant activity measured by DPPH assay, ABTS assay as well as reducing power assay was also higher in fermented Monascus cereals with the best results in rice (3.09 ±0.02; 62.9 ±2.24; 43.19 ±2.07 mg TEAC per g of dry weight). Sample of fermented rice contained the highest level of total polyphenols (15.31 ±3.62 mg GAE per g of dry weight), total flavonoids (1.65 mg QE per g of dry weight) and total phenolic acids (9.47 ±0.56 mg CAE per g of dry weight). In fermented cereals was also determined higher contact of reducing sugars (highest value in rice 246.97 ±7.96 mg GE per g), proteins (highest value in buckwheat 28.47 ±1.24%), ash (highest value in sorghum 2.74 ±0.08%) and fat (highest value in corn 4.89 ±0.03%) with compare to non-fermented samples. Results of crude fiber content of both - fermented and non-fermented cereals were balanced with similar values. Results of this study shown that Monascus purpureus fermented cereal substrates might be a potential sources of several bioactive compounds in food products.
Downloads
References
AACC methods 8th, E.d., 1996. Methods 08-01, 44-05A, 46-13, 54-20. St. Paul, MN: American Association of Cereal Chemists.
Blanc, P. J., Laussac, J. P., Le Bars, J., Le Bars, P., Loret, M. O., Pareilleux, A., Prome, D., Prome, J. C., Santerre, A. L., Goma, G. 1995. Characterization of monascidin A from Monascus as citrinin. International Journal of Food Microbiology, vol. 27, no. 2-3, p. 201-213. https://doi.org/10.1016/0168-1605(94)00167-5
Cheng, J., Bong-Keun, Ch., Yang, S., Suh, J. W. 2016. Effect of fermentation on the antioxidant activity of rice bran by Monascus pilosus KCCM60084. Journal of Applied Biological Chemistry, vol. 59, no. 1, p. 57-62. https://doi.org/10.3839/jabc.2016.011
Cheng, M. J., Wu, M. D., Chen, I. S., Tseng, M., Yuan, G. F. 2011. Chemical constituents from the fungus Monascus purpureus and their antifungal activity. Phytochemistry Letters, vol. 4, no. 3, p. 372-376. https://doi.org/10.1016/j.phytol.2011.08.003
Childress, L., Gay, A., Zargar, A., Ito, M. K., 2013. Review of red yeast rice content and current Food and Drug Administration oversight. Journal of Clinical Lipidology, vol. 7, no. 2, p. 117-122. https://doi.org/10.1016/j.jacl.2012.09.003 PMid:23415430
Farmakopea Polska, 1999. The Polish Farmaceutical Society [online] s.a. [cit.2017-01-25] Available at: http://www.ptfarm.pl/?pid=1&language=en.
Hajjaj, H., François, J. M., Goma, G., Blanc, P. J. 2012. Effect of amino acids on red pigments and citrinin production in Monascus ruber. Journal of Food Science, vol. 77, no. 3, p. 156-159. https://doi.org/10.1111/j.1750-3841.2011.02579.x PMid:22384962
Handa, C. L., Couto, U. R., Vicensot, A. H., Geogetti, S. R., Ida, E. I. 2014. Optimisation of soy flour fermentation parametrs to produce β-glucosidase for bioconversion into aglycones. Food Chemistry, vol. 152, p. 56-65. https://doi.org/10.1016/j.foodchem.2013.11.101 PMid:24444906
Huynh, N. T., Camp, J. V., Smagghe, G., Raes, K. 2014. Improved release and metabolism of flavonoid by stewed fermentation process: A review. International Journal of Molecular Science, vol. 15, no. 1, p. 19369-19388. https://doi.org/10.3390/ijms151119369 PMid:25347275
Kennedy, J., Auclair, K., Kendrew, S. G., Park, C., Vederas, J. C., Hutchinson, C. R. 1999. Modulation of polyketide synthase activity by accerrory proteins during lovastatin biosynthesis. Science, vol. 284, no. 54118, p. 1136-1372.
Lee, Y. L., Yang, J. H., Mau, J. L. 2008. Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chemistry, vol. 106, no. 3, p. 1128-1137. https://doi.org/10.1016/j.foodchem.2007.07.047
Mostafa, M. E., Abbady, M. S. 2014. Secondary metabolites and bioactivity of the Monascus pigment: Review Article. Global Journal of Biotechnology and Biochemistry, vol. 9, no. 1, p. 1-13.
Oyaizu, M. 1986. Studies on products of browning reaction - antioxidative activities of products of browning reaction prepared from glucoseamine. Japanese Journal of Nutrition, vol. 44, p. 307-314. https://doi.org/10.5264/eiyogakuzashi.44.307
Pitt, J. I., Hocking A. D. 1997. Fungi and food spoilage. 2nd ed. London : Chapman and Hall. 519 p. ISBN 9781461563914. https://doi.org/10.1007/978-1-4615-6391-4
Purwar, S., Gupta, E., Zaki, S. 2016. Effect of solid fermentation on nutritive values of rice by Monascus spp. Bioved, vol. 27, p. 185-189.
Quettier-Deleu, Ch., Gressier, B., Vasseur, J., Dine, Claude Brunet, C., Luyckx, M., Cazin, M., Cazin, J. C., Bailleul, F., Trotin, F. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, vol. 72, no. 1-2, p. 35-42. https://doi.org/10.1016/S0378-8741(00)00196-3
Rajasekaran, A., Kalaivani, M. 2011. Hypolipidemic and antioxidant activity of aqueous extract of Monascus purpureus fermented Indian rice in high cholesterol diet fed rats. Turk Journal of Medical Sciences, vol. 41, no. 1, p. 25-32.
Razak, D. L. A., Rashid, N. Y., Jamaluddin, A., Sharifudin, S. A., Long, K. 2015. Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus. Biocatalysis and Agricultural Biotechnology, vol. 4, no. 1, p. 33-38. https://doi.org/10.1016/j.bcab.2014.11.003
Re, R. N., Pellegrini, A., Proteggente, A., Pannala, M., Yang, R., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, vol. 26, no. 9-10, p. 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
SánchésMoreno, C., Larrauri, A., Saura˗Calixto, F. 1998. A procedure to measure the antioxidant efficiency of polyphenols. Journal of the Science of Food and Agriculture, vol. 76, no. 2, p. 270-276.
SAS, 2009. Users Guide Version 9. 2. SAS/STAT (r) SAS [online] s.a. [cit.2017-01-25] Available at: https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm.
Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Agricultural, vol. 6, p. 144-158.
Srianta, I., Harijono, L. 2015. Monascus - fermented sorghum: pigments and monakoli K produced by Monascus purpureus on whole grain, dehulled grain and bran substrates. International Food Research Journal, vol. 22, no. 1, p. 377-382.
Srianta, I., Ristiarini, S., Nugerhani, I., Sen, S. K., Zhang, B. B., Xu, G. R., Blanc, P. J. 2014. Recent research and development of Monascus fermentation products. Food Research Journal, vol. 21, no. 1, p. 1-12.
Srianta, I., Zubaidah, E., Estiasih, T., Yamada, M., Harijon, O. 2016. Comparison of Monascus purpureus growth pigment production and composition on different cereal substrates with solid state fermentation. Biocatalysis and Agricultural Biotechnology, vol. 7, p. 181-186. https://doi.org/10.1016/j.bcab.2016.05.011
Tseng, Y. H., Yang, J. H., Chen, C. H. and Mau, J. L. 2011. Quality and antioxidant properties of anka-enriched bread. Journal of Food Processing and Preservation, vol. 35, no. 4, p. 518-523. https://doi.org/10.1111/j.1745-4549.2010.00497.x
Venkateswaran, V. 2010. Characterisation of bioactive molecules from Monascus purpureus fermented finger millet (Eleusine ciracana) : Dissertation theses. Mysore, 181 p.
Vidyalakshmi, R., Paranthaman, R., Murugesh, S., Singaravadivel, K. 2009. Microbial bioconversion of rice broken to food grade pigments. Global Journal of Biotechnology and Biochemistry, vol. 4, no. 2, p.84-87.
Wan, N. S. 2005. Experiment no. 4A, Glucose assay by dinitrosalicylic colorimetric method. [online] s.a. [cit.2017-01-25] Available at: https://terpconnect.umd.edu/~nsw/ench485/lab4a.htm.
Yang, C. W., Mousa, S. A. 2012. The effect of red yeast rice (Monascus purpureus) in dyslipidemia and other disorders. Complementary Therapies in Medicine, vol. 20, no. 6, p. 466-474. https://doi.org/10.1016/j.ctim.2012.07.004 PMid:23131380
Yang, J. H., Tseng, Y. H., Lee, Y. L., Mau, J. L. 2006. Antioxidant properties of metabolic extract from monascal rice. LWT-Food Science and technology, vol. 39, p. 740-747. https://doi.org/10.1016/j.lwt.2005.06.002
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).