

Potravinarstvo, vol. 10, 2016, no. 1, p. 346-353 doi:10.5219/622 Received: 12 March 2016. Accepted: 25 June 2016. Available online: 15 July 2016 at www.potravinarstvo.com © 2016 Potravinarstvo. All rights reserved. ISSN 1337-0960 (online) License: CC BY 3.0

OXIDATIVE STABILITY OF CHICKEN'S BREAST AFTER VACUUM PACKAGING, EDTA, SAGE AND ROSEMARY ESSENTIAL OILS TREATMENT

Adriana Pavelková, Marek Bobko, Peter Haščík, Miroslava Kačániová, Jana Tkáčová

ABSTRACT

In the present work, the effect of the sage and rosemary essential oils on oxidative stability of chicken breast muscles during chilled storage was investigated. In the experiment were chickens of hybrid combination Cobb 500 after 42 days of the fattening period slaughtered. All the broiler chickens were fed with the same feed mixtures and were kept under the same conditions. The feed mixtures were produced without any antibiotic preparations and coccidiostats. After slaughtering was dissection obtained fresh chicken breast with skin from left half-carcass, which were divided into five groups (n = 5): C - control air-packaged group; A1 - vacuum-packaged experimental group; A2 - vacuum-packaged experimental group with EDTA solution 1.50% w/w; A3 - vacuum-packaged experimental group with Salvia officinalis L. oil 2.0% v/w and A4 - vacuum-packaged experimental group with Rosmarinus officinalis L. essential oil 2.0% v/w. The sage and rosemary essential oils were applicate on surface chicken breasts and immediately after dipping, each sample was packaged using a vacuum packaging machine and storage in refrigerate at 4 ±0.5 °C. The value of thiobarbituric acid (TBA) expressed as amount of malondialdehyde (MDA) in 1 kg sample was measured during storage in 1st, 4th, 8th, 12th and 16th day. The treatments of chicken breasts with sage and rosemary essential oils show statistically significant differences between all testing groups and control group, where higher average value of MDA measured in breast muscle of broiler chickens was in samples of control group (0.396 mg.kg⁻¹) compared to experimental groups A1 (0.060 mg.kg⁻¹), A2 (0.052 mg.kg⁻¹), A3 (0.042 mg.kg⁻¹) and A4 (0.041 mg.kg⁻¹) after 16-day of chilled storage. The results of experiment showed that the treatment of chicken breast with sage and rosemary essential oils had positive effect on the decrease of oxidative processes in breast muscles during chilling storage and use of plant essential oils is one of the possibilities increase shelf life of fresh chicken meat.

Keywords: oxidative stability; chicken breast; essential oil; sage, rosemary

INTRODUCTION

Meat and meat products are essential components in the human diets and their consumption is affected by various factors, e.g. product characteristics, consumer and environment related (Jiménez-Colmenero et al., 2001). meat has many desirable Chicken nutritional characteristics such as a low lipid content and relatively high concentration of polyunsaturated fatty acids (PUFAs) which can be further increased by specific dietary strategies (Bourre, 2005). However, a high degree of polyunsaturation accelerates oxidative processes leading to deterioration in meat flavour, colour, texture and nutritional value (Mielnick et al., 2006).

Lipid oxidation causes degradation of polyunsaturated fatty acids (PUFA) and generation of residual products, such as malondialdehyde (MDA) and lipid-derived volatiles leading to sensory and nutritional deterioration of meat (Kanner et al., 1991). Oxidative reactions in foodstuffs are enhanced after cooking and refrigerated storage through the increase of their oxidative instability due to the degradation of natural antioxidants and the release of free fatty acids and iron from the haem molecule

(Estévez and Cava, 2004; Kingston et al., 1998; Kristensen and Purslow, 2001).

The higher level of PUFAs in muscle membranes increases the susceptibility of oxidative deterioration of lipid (**Engberg et al., 1996**), which impairs the organoleptic characteristics and shortens the shelf-life of meat and meat products.

The major strategies for preventing lipid oxidation are the use of antioxidants and restricting the access to oxygen during storage vacuum-packaging (**Tang et al., 2001**). The antioxidant additives are added to fresh and further processed meats to prevent oxidative rancidity, retard development of off-flavours, and improve colour stability (**Nam and Ahn, 2003**).

For chicken meat products, freshness, as one of the most important quality attributes, has attracted attention from producers and consumers and has a strong relationship with product sales and consumption (**Rzepka et al., 2013**). One option for reducing lipid oxidation is the use of various natural plant antioxidants presented in essential oils.

The use of natural preservatives to increase the shelf life of meat products is a promising technology since many vegetal substances have antioxidant and antimicrobial properties. Functional ingredients in meat products may improve the nutritional and health qualities and prolonging their self-life (**Fernández-Ginés et al., 2005**). Plants' extracts rich in polyphenols are good candidates, since they are easily obtained from natural sources and they efficiently prevent lipid oxidation in food products.

Studies have shown wide effective in spices to retard lipid oxidation in meat products (Juntachote et al., 2006, 2007; Chouliara et al., 2007; Mariutti et al., 2008; Sasse et al., 2009; Lee et al., 2010; Marcinčák et al., 2010; Viuda-Martos et al., 2011; Tkáčová et al., 2015).

Essential oils (EOs) are aromatic oily liquids obtained from plant material (flowers, buds, seeds, leaves, twigs, bark, herbs, wood, fruits and roots). They can be obtained by expression, fermentation, enfleurage or extraction but the method of steam distillation is most commonly used for commercial production of EOs (Van de Braak and Leijten, 1999). EOs obtained from various herbs are widely used in cosmetics and food manufacturing and can be used for prolonging the shelf-life of food for their antimicrobial (Skandamis et al., 2002; Mihajilov-Krstev et al., 2009), and antioxidant activities (Burt, 2004; Bobko et al., 2015a, b).

In the last years, many researchers have evaluated the antioxidant properties of extracts from different plants and vegetables (Chen et al., 2002; Ibanez et al., 2003; Ichikawa et al., 2003).

Essential oils represent a small fraction of the plant composition; the main compounds are terpenes and sesquiterpenes, and several oxygenated derivatives compounds (alcohols, aldehydes, ketones, acids, phenols, ethers, esters, etc.) all of them responsible for the characteristic plant odour and flavour (Yanishlieva et al., 2006). These compounds include natural flavourings such as sage, oregano, rosemary and others (Mariutti et al., 2008).

Sage (*Salvia officinalis*) and rosemary (*Rosmarinus officianalis*) are popular *Labiatae* herbs with a verified potent antioxidant activity (**Dorman et al., 2003**). The antioxidant activity of sage and rosemary essential oils is mainly related to two phenolic diterpenes: carnosic acid and carnosol which are considered two effective free-radical scavengers (**Dorman et al., 2003**; **Ibanez et al., 2003**).

Sage (*Salvia officinalis*) is a variety of aromatic herb which has been planted widely throughout much of the world. It is not only used as raw material in the pharmaceutical and cosmetic industries but also used to improve flavours of foods (**Tepe et al., 2006**). Sage has been reported to have excellent activities in scavenging radicals, reducing metal ions and inhibiting lipid peroxidation (**Dorman et al., 2003; Grzegorczyk et al., 2007**). The phenolic compounds, such as carnosol, carnosic acid and rosmarinic acid, in the plant may account for the antioxidant activity of sage. Some researchers have reported that sage, or sage extracts, can effectively retard lipid oxidation of muscle foods (**Fasseas et al., 2007; McCarthy et al. 2001a; Tanabe et al., 2002**).

Among natural antioxidant sources, rosemary (*Rosmarinus officinalis* L.), a woody aromatic herb that is native to the Mediterranean countries, has recently been

authorized by the European Union under Directive 95/2/EC and assigned E-392 as its E number (European Union Directives 2010/67/EU and 2010/69/EU) for use in meat product preservation. The addition of rosemary extract to poultry products has been shown to be effective in retarding lipid oxidation, and previous studies in chicken sausages (Liu et al., 2009) and patties (Naveena et al., 2013) have pointed to the protective effect of rosemary extract (500–1500 ppm) and leaves (22.5–130 ppm) in inhibiting lipid oxidation.

Rosemary antioxidant activity is related to components such as phenolic diterpenes, carnosol (CAS No. 5957-80-2) and carnosic acid (CAS No. 3650-09-7) (**Rodriguez-Rojo et al., 2012**). The antioxidant capacity of phenolic compounds is due to their ability to scavenge free radicals, donate hydrogen atoms and chelate metal cations (Shan et al., 2005). Previous studies (Azmir et al., 2013; Wang et al., 2013) have reported that the yield of bioactive compounds can be changed or modified by using different extraction procedures, solvents, temperatures, pressures and times.

In this study we aimed to investigate the combined effect of ethylenediaminetetraacetate (EDTA) and plant essential oils (*Salvia officinalis* L. and *Rosmarinus officinalis* L.) on the oxidative stability of fresh chicken breasts stored under vacuum packaging (VP), at 4 ± 0.5 °C for a period of 16 days.

MATERIAL AND METHODOLOGY

The experiment was implemented in the local poultry station (Hydinaren a.s., Zamostie). The tested were broiler chickens of hybrid combination Cobb 500 both sexes. All the broiler chickens were fed with the same feed mixtures and were kept under the same conditions. The feed mixtures were produced without any antibiotic preparations and coccidiostats. At the end of the fattening period (42. day) were chickens slaughtered for analysis in laboratory of Slovak University of Agriculture in Nitra. After slaughtering was dissection obtained fresh chicken breast with skin from left half-carcass, which were divided into five groups (n = 5):

- Air-packaged (C, control group): chicken breast fresh meat was packaging to polyethylene backs and stored aerobically in refrigerator;
- Vacuum-packaged (A1, experimental group): chicken breast fresh meat was packaging to polyethylene backs and stored anaerobically in vacuum and in refrigerator;
- VP with EDTA solution 1.50% w/w (A2, experimental group): chicken breast fresh meat was treated with EDTA for 1 min and packaging to polyethylene backs and stored anaerobically in vacuum and in refrigerator;
- VP with *Salvia officinalis* L. 2.0% v/w (A3, experimental group): chicken breast fresh meat was treated with *Salvia officinalis* L. oil for 1 min and packaging to polyethylene backs and stored anaerobically in vacuum and in refrigerator;
- VP with *Rosmarinus officinalis* L. 2.0% v/w, (A4, experimental group): chicken breast fresh meat was treated with *Rosmarinus officinalis* L. oil for 1 min and packaging to polyethylene backs and stored anaerobically in vacuum and in refrigerator.

Immediately after dipping, each sample was packaged using a vacuum packaging machine type VB-6 (RM Gastro, Czech Republic).

Ethylenediaminetetraacetic (EDTA) acid (C10H14N2O8.Na2.2H2O) was 99.5% purity, analytical grade, (Invitrogen, USA). A stock solution of 500 mM concentration was prepared by diluting 186.15 g.L⁻¹ distilled water. A final concentration of 50 mM EDTA solution was prepared from the stock solution. The pH of the solution was adjusted to 8.0 with the addition of the appropriate quantity of NaOH solution. The amount of EDTA added to the treat chicken breasts was 0.28 g.kg⁻¹. Essential oil (Calendula, Nova Lubovna, Slovakia) were added to the coated chicken beast surface (both sides) of each sample using a micropipette so as to achieve a 0.2% v/w final concentration of essential oils.

TBA value expressed in number of malondialdehyde (MDA) was measured in the process of first storage day of 1st, 4th, 8th, 12th and 16th day. TBA number was determined by **Marcinčák et al. (2004)**. Absorbance of samples was measured on UV-VIS spectrophotometer T80 (PG Limeted Instruments, UK) at a wavelength of 532 nm, the translation results on the amount of MDA in 1 kg samples.

Results of the experiment were evaluated by statistical program SAS 9.3 with using application Enterprise Guide 4.2. The variation-statistical values (mean, standard deviation) were calculated and to determine the significant difference between groups was used variance analyse.

RESULTS AND DISCUSSION

Jo et al. (2006) stated that oxidation of lipids can have significant impact to meat industry. Meat containing unsaturated fatty acids is very sensitive to lipid oxidation especially during storage, because polyunsaturated fatty acid esters are easily oxidized by molecular oxygen. This kind of oxidation is called autoxidation and proceeds by a free radical chain mechanism (Brewer, 2011).

The results of the oxidation stability of fresh chicken

breast muscles of chicken Cobb 500 after application EDTA and plant essential oils (*Salvia officinalis* L. and *Rosmarinus officinalis* L.) during 16 days storage at 4 °C are shown in Table 1 and Figure 1.

The higher average value of MDA measured in breast muscle in 0 day of experiment was in samples of vacuumpackaged chicken breasts group with Rosmarinus officinalis L. oil 2.0% v/w group A4 (0.026 mg.kg⁻¹) compared to experimental groups A1 (0.022 mg.kg⁻¹), A2 (0.023 mg.kg⁻¹), A3 (0.024 mg.kg⁻¹) and air-packaged control group (0.024 mg.kg⁻¹). We have not found statistically significant differences between testing groups chicken breasts. During chilled storage of the breast muscles were noticed increased content of malondialdehyde in comparison to the first day of storage.

On the fourth day of storage were measured below the values of malondialdehyde in all experimental groups (0.028 mg.kg⁻¹ in group A2, 0.030 mg.kg⁻¹ in group A3, 0.034 mg.kg⁻¹ in group A4, and 0.036 mg.kg⁻¹ – group A1) opposite control group C (0.182 mg.kg⁻¹). We have found statistically significant differences ($p \le 0.05$) between control group C and all tested groups.

A similar tendency of improving the oxidation stability after eight days of refrigerate storage in the breast muscle of hybrid combination Cobb 500 we found in the experimental groups ($0.031 \text{ mg.kg}^{-1} - A3$, A4 to 0.048 mg.kg^{-1} - A1) compared with control group C (0.191 mg.kg^{-1}).

After 12 days of breast muscle storage was statistic significantly ($p \le 0.05$) improved the oxidative stability of all test groups chicken breasts (0.033 mg.kg⁻¹ – A4 to 0.055 mg.kg⁻¹ – A1) compared to the control group C (0.229 mg.kg⁻¹). We have found statistically significant differences ($p \le 0.05$) between control group C and tested groups, between group A1 and A2, A4 and between tested group A2 and groups A3, A4.

During testing period of chilled storage were higher values of malondialdehyde measured in control group C

Table 1 Effect of sage and rosemary essential oils on the concentration of MDA (mg.kg⁻¹) in breast muscle (mean $\pm SD$) (n = 5).

Day	С	A1	A2	A3	A4
0	0.024 ±0.006	0.022 ±0.007	0.023 ±0.006	0.024 ±0.005	0.026 ± 0.007
4	0.182 ± 0.007^{a}	0.036 ± 0.004^{b}	0.028 ± 0.007^{b}	$0.030 \ {\pm} 0.004^{b}$	0.034 ± 0.004^{b}
8	0.191 ±0.006ª	0.048 ± 0.005^{b}	0.044 ± 0.007^{b}	$0.031 \pm 0.008^{\circ}$	0.031 ±0.007°
12	0.229 ± 0.019^{a}	$0.055 {\pm} 0.006^{b}$	$0.043 \pm 0.005^{\circ}$	0.037 ± 0.009^{cd}	0.033 ± 0.005^d
16	0.396 ± 0.027^{a}	0.060 ± 0.005^{b}	$0.052 \pm 0.004^{\circ}$	$0.042 \ {\pm} 0.004^{d}$	0.041 ± 0.005^{d}

Note: C - air-packaged control group; A1 - vacuum-packaged control group; A2 - vacuum-packaged control samples with EDTA solution 1.50% w/w; A3 - vacuum-packaged experimental group with *Salvia officinalis* L. oil 2.0% v/w; A4 - vacuum-packaged experimental group with *Rosmarinus officinalis* L. oil 2.0% v/w. Mean values in the same lines with different superscripts (a, b, c) are significantly different at $p \leq 0.05$ level.

compare to experimental groups. The higher average value of MDA measured in breast muscle of broiler chickens Cobb 500 was in samples of control group C (0.396 mg.kg⁻¹) compared to experimental groups A1 (0.060 mg.kg⁻¹), A2 (0.052 mg.kg⁻¹), A3 (0.042 mg.kg⁻¹) and A4 (0.041 mg.kg⁻¹) after 16-day of chilled storage. At the end of the test period we have found statistically significant differences ($p \le 0.05$) between all testing groups and control group of chicken breasts.

Botsoglou et al. (2007) reported that a higher concentration of antioxidants in poultry meat has the effect of reducing lipid oxidation, i.e. there is a reduction in malondialdehyde values during chilling storage. **Gong et al. (2010)** used TBARs values as an indicator of secondary lipid oxidation products, which were determined in minced breast and thigh muscles from chicken, turkey and duck during -4 °C storage. TBARs formation was slowest in minced chicken thigh, intermediate in duck thigh and fastest in turkey thigh (p < 0.01).

The plant essential oils such as oregano, thyme, sage etc. (Economou et al., 1991; Yanishlieva and Marinova, 1995; Man and Jaswir, 2000), show positive effect on oxidation stability of lipids in meat.

In contrast to synthetic antioxidants, the use of natural antioxidants from spices is increasing since their application is less stringently regulated in most countries around the world. Active essential oil compounds in rosemary, oregano, borage and sage are for example phenolic diterpenes, derivates of hydroxycinnamic acid, flavonoides and triterpenes (**Oberdieck**, 2004; **Ryan et al.**, 2009; **Sanchez-Escalante et al.**, 2003). For rosemary, sage and oregano, the most active substances with a high antioxidant potential are carnosic acid, carnosol, and rosmarinic acid (**Oberdieck**, 2004).

Estévez et al. (2007) evaluated the antioxidant effect of two plant essential oils (sage and rosemary essential oils) and one synthetic antioxidant (BHT) on refrigerated stored liver pâté (4 °C/90 days). The addition of antioxidants significantly ($p \leq 0.05$) reduced the total amount of lipid-derived volatiles isolated from liver pâtés HS. Plant essential oils inhibited oxidative deterioration of liver pâtés to a higher extent than BHT did.

Fasseas et al. (2007) showed that porcine and bovine ground meat treated with the essential oils of oregano and sage (3% w/w) had increased oxidative stability and the antioxidant capacity of the raw and cooked meat (85 °C for 30 min) was high during storage at 4 °C for 12 days. They also suggested that addition of antioxidants is much more important for cooked meat products than the raw products.

Nohamed et al. (2011) reported that addition of herbal extracts of marjoram, rosemary and sage at concentration of 0.04% (v/w) to ground beef prior to irradiation (2 and 4.5 kGy) significantly lowered the TBARS values, off odour scores and increased colour and acceptability scores. **Sampaio et al. (2012)** examined the effect of combinations of sage, oregano and honey on lipid oxidation in cooked chicken meat (thigh and breast) during refrigeration at 4 ± 0.5 °C for 96 h as measured by TBARs numbers. The analysis of variance on the TBARs data indicated that the TBARs values were significantly affected by natural antioxidants throughout refrigeration (p < 0.05). Analysis their data showed that all of the three combinations of natural antioxidants tested would be beneficial for reducing the velocity of lipid oxidation in

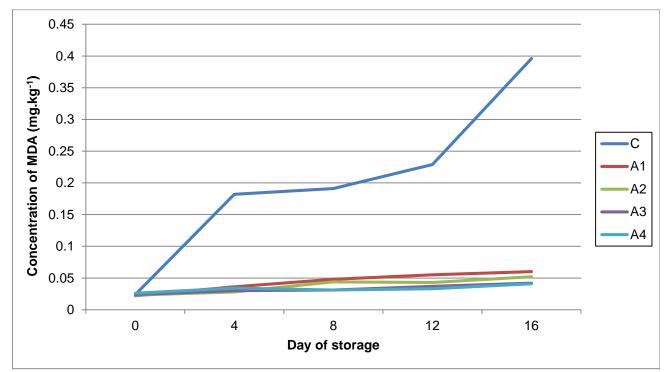


Figure 1 Concentration of MDA (mg.kg⁻¹) in breast muscle.

Note: C - air-packaged control group; A1 - vacuum-packaged control group; A2 - vacuum-packaged control samples with EDTA solution 1.50% w/w; A3 - vacuum-packaged experimental group with *Salvia officinalis* L. oil 2.0% v/w; A4 - vacuum-packaged experimental group with *Rosmarinus officinalis* L. oil 2.0% v/w.

both chicken meats during storage, what are corroborated by other authors who have added honey and herbs and thereby inhibited the development of lipid oxidation in cooked meats during refrigeration time (McKibben and Engeseth, 2002; Juntachote et al., 2007).

Mohamed et al. (2011) reported that addition of herbal extracts of marjoram, rosemary and sage at concentration of 0.04% (v/w) to ground beef prior to irradiation (2 and 4.5 kGy) significantly lowered the TBARS values, off odour scores and increased colour and acceptability scores.

The effectiveness of rosemary essential oil as an inhibitor of lipid oxidation in meat products has been documented (Esteévez and Cava, 2006; McCarthy et al., 2001; Sebranek et al., 2005).

Plant essential oils have been successfully introduced to inhibit oxidative deterioration of meat and fat products, this deterioration being generally referred to the accumulation of lipid-oxidation-derived products and to the generation of lipid-derived volatiles in meat products (Ahn et al., 2002; Yu et al., 2002). Formanek et al. (2001) and McCarthy et al. (2001) reported the high effectiveness of antioxidants from natural resources against oxidative reactions that showed similar activity to those from synthetic origin such as BHT. Sebranek et al. (2005) reported similar antioxidant activities of rosemary essential oils and synthetic ones (BHT/BHA) regarding MDA generation in refrigerated sausages.

Ramos Avila et al. (2013) stated that the degradation pathways of fatty substances play one of the main causes of foods deterioration and unpleasant odours. This factor is also responsible for the loss of sensory properties.

Rhee et al. (1996) observed that raw poultry meat is less prone to lipid oxidation than beef or pork meat because of its lower iron content.

CONCLUSION

The essential oil as well essential oils from *Labiatae* herbs can be used as substitutes to chemical food additives which could prolong of shelf life of the meat and meat products. Results achieved in the experiment show that the treatment of chicken breast muscles with *Salvia officinalis* L. and *Rosmarinus officinalis* L. essential oils in concentration 0.20% v/w with combination vacuum packaging had positive effect on the decrease of oxidative processes in chicken breast muscles during chilling storage at 4 ± 0.5 °C in comparative with tested groups - control air-packaged group, vacuum-packaged experimental group and vacuum-packaged experimental group with EDTA solution 1.50% w/w.

REFERENCES

Ahn, J., Grün, I. U., Fernando, L. N. 2002. Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. *Journal of Food Science*, vol. 67, no. 4, p. 1364-1369. <u>http://dx.doi.org/10.1111/j.1365-2621.2002.tb10290.x</u>

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. *Journal of Food Engineering*, vol. 117, no. 4, p. 426-436. http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014 Bobko, M., Haščík, P., Bobková, A., Pavelková, A., Tkáčová, J., Trembecká, L. 2015b. Lipid oxidation in chicken meat after application of bee pollen extract, propolis extract and probiotic in their diets. *Potravinarstvo*, vol. 9, no. 1, p. 342-346. <u>http://dx.doi.org/10.5219/495</u>

Bobko, M., Kročko, M., Haščík, P., Bobková, A. 2015a. Oxidative stability of chicken meat after propolis extract application in their diets. *Potravinarstvo*, vol. 9, no. 1, p. 48-52. <u>http://dx.doi.org/10.5219/427</u>

Botsoglou, N. A., Govaris, A., Giannenas, I., Botsoglou, E., Papapageorgiou, G. 2007. The incorporation of dehydrated rosemary leaves in therations of turkeys and their impact on the oxidative stability of the produced raw and cooked meat. *International Journal of Food Science and Technology*, vol. 58, no. 4, p. 312-320. http://dx.doi.org/10.1080/09637480701228583

Bourre, J. M. 2005. Where to find omega-3-fatty acids and how feeding animals with diet enriched in omega-3-fatty acids to increase nutritional value derived products for human: what is actually useful? *Journal of Nutrition, Health and Aging*, vol. 9, no. 4, p. 232-242.

Brewer, M. S. 2011. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. *Comprehensive Reviews in Food Science and Food Safety*, vol. 10, no. 4, p. 221-247. <u>http://dx.doi.org/10.1111/j.1541-4337.2011.00156.x</u>

Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. *International Journal of Food Microbiology*, vol. 94, no. 3, 223-253. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022

Dorman, H. J. D., Peltoketo, A., Hiltunen, R., Tikkanen, M. J. 2003. Characterisation of the antioxidant properties of deodourised aqueous extracts from selected *Lamiaceae* herbs. *Food Chemistry*, vol. 83, no. 2, p. 255-262. http://dx.doi.org/10.1016/s0308-8146(03)00088-8

Economou, K. D., Oreopoulou, V., Thomopouls, C. D. 1991. Antioxidant properties of some plant extract of the labiatae family. *JOACS*, vol. 68, no. 2, p. 109-113.

Engberg, R. M., Lauridsen, C., Jensen, S. K., Jakobsen, K. 1996. Inclusion of oxidised vegetable oil in broiler diets. Its influence on nutrient balance and on antioxidative status of broilers. *Poultry Science*, vol. 75, no. 8, p. 1003-1011. http://dx.doi.org/10.3382/ps.0751003

Estévez, M., Cava, R. 2004. Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. 68, Meat Science, vol. no. 4. p. 551-558. http://dx.doi.org/10.1016/j.meatsci.2004.05.007

Estévez, M., Cava, R. 2006. Effectiveness of rosemary essential oil as an inhibitor of lipid and protein oxidation: Contradictory effects in different types of frankfurters. *Meat Science*, vol. 72, no. 2, p. 348-355. http://dx.doi.org/10.1016/j.meatsci.2005.08.005

Estévez, M., Ramírez, R., Ventanas, S., Cava, R. 2007. Sage and rosemary essential oils versus BHT for the inhibition of lipid oxidative reactions in liver pâté. *LWT*, vol. 40, no. 1, p. 58-65. http://dx.doi.org/10.1016/j.lwt.2005.07.010

Fasseas, M. K., Mountzouris, K. C., Tarantilis, P. A., Polissiou, M., Zervas, G. 2007. Antioxidant activity in meat treated with oregano and sage essential oils. *Food Chemistry*, vol. 106, no. 3, p. 1188-1194. http://dx.doi.org/10.1016/j.foodchem.2007.11.068

Fernández-Ginés, J. M., Fernández-López, J., Sayas-Barberá, E., Pérez-Alvarez, J. A. 2005. Meat products as functional foods: a review. *Journal of Food Science*, vol. 70, no. 2, p. R37-R43. <u>http://dx.doi.org/10.1111/j.1365-2621.2005.tb07110.x</u>

Formanek, Z., Kerry, J. P., Higgins, F. M., Buckley, D. J., Morrissey, P. A., Farkas, J. 2001. Addition of synthetic and natural antioxidants to a-tocopheryl acetate supplemented beef patties: Effects of antioxidants and packaging on lipid oxidation. *Meat Science*, vol. 58, no. 4, p. 337-341. http://dx.doi.org/10.1016/s0309-1740(00)00149-2

Gong, Y., Parker, R. S., Richards, M. P. 2010. Factors affecting lipid oxidation in breast and thigh muscle from chicken, turkey and duck. *Journal of Food Biochemistry*, vol. 34, no. 4, p. 869-885. <u>http://dx.doi.org/10.1111/j.1745-4514.2010.00341.x</u>

Grzegorczyk, I., Matkowski, A., Wysokińska, H. 2007. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. *Food Chemistry*, vol. 104, no. 2, p. 536-541. <u>http://dx.doi.org/10.1016/j.foodchem.2006.12.003</u>

Chen, Z.-Y., Wong, I. Y. F., Leung, M. W. S., He, Z.-D., & Huang, Y. 2002. Characterization of antioxidants present in bitter tea (Ligustrum pedunculare). *Journal of Agricultural and Food Chemistry*, vol. 50, no. 26, p. 7530-7535. http://dx.doi.org/10.1021/jf0206421

Chouliara, E., Karatapanis, A., Savvaidis, I. N., Kontominas, M. G. 2007. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 °C. *Food Microbiology*, vol. 24, no. 6, p. 607-617. http://dx.doi.org/10.1016/j.fm.2006.12.005

Ibanez, E., Kubatova, A., Senorans, F. J., Cavero, S., Reglero, G., Hawthorne, S. B. 2003. Subcritical water extraction of antioxidant compounds from rosemary plants. *Journal of Agricultural and Food Chemistry*, vol. 51, no. 2, p. 375-382. <u>http://dx.doi.org/10.1021/jf025878j</u>

Ichikawa, M., Ryu, K., Yoshida, J., Ide, N., Kodera, Y., Sasaoka, T., Rosen, R.T. 2003. Identification of six phenylpropanoids from garlic skin as major antioxidants. *Journal of Agricultural and Food Chemistry*, vol. 51, no. 25, p. 7313-7317. http://dx.doi.org/10.1021/jf034791a

Jiménez-Colmenero, F., Carballo, J., Cofrades, S. 2001. Review. Healthier meat and meat products: their role as functional foods. *Meat Science*, vol. 59, no. 1, p. 5-13. http://dx.doi.org/10.1016/s0309-1740(01)00053-5

Jo, S., Nam, K., Min, B., Ahn, D., Cho, S., Park, W. 2006. Antioxidant activity of prunus mume extract in cooked chicken breast meat. *International Journal of Food Science and Technology*, vol. 41, no. s1, p. 15-19. http://dx.doi.org/10.1111/j.1365-2621.2006.01234.x

Juntachote, T., Berghofer, E., Siebenhandl, S., Bauer, F. 2006. The antioxidative properties of Holy basil and Galangal in cooked ground pork. *Meat Science*, vol. 72, no. 3, p. 446-456. <u>http://dx.doi.org/10.1016/j.meatsci.2005.08.009</u>

Juntachote, T., Berghofer, E., Siebenhandl, S., Bauer, F. 2007a. Antioxidative effect of added dried Holy basil and its ethanolic extracts on susceptibility of cooked ground pork to lipid oxidation. *Food Chemistry*, vol. 100, no. 1, p. 129-135. http://dx.doi.org/10.1016/j.foodchem.2005.09.033

Juntachote, T., Berghofer, E., Siebenhandl, S., Bauer, F. 2007a. Antioxidative effect of added dried Holy basil and its ethanolic extracts on susceptibility of cooked ground pork to lipid oxidation. *Food Chemistry*, vol. 100, no. 1, p. 129-135. http://dx.doi.org/10.1016/j.foodchem.2005.09.033

Kanner, J., Hazan, B., Doll, L. 1991. Catalytic 'free' iron ions in muscle foods. *Journal of Agricultural and Food* *Chemistry*, vol. 36, no. 3, p. 412-415. http://dx.doi.org/10.1021/jf00081a002

Kingston, E. R., Monahan, F. J., Buckley, D. J., Lynch, P. B. 1998. Lipid oxidation in cooked pork as affected by vitamin E, cooking and storage conditions. *Journal of Food Science*, vol. 63, no. 3, p. 386-389. http://dx.doi.org/10.1111/j.1365-2621.1998.tb15748.x

Kristensen, L., Purslow, P. P. 2001. The effect of processing temperature and addition of mono- and di- valent salts on the heme–nonheme-iron ratio in meat. *Food Chemistry*, vol. 73, no. 4, p. 433-439. <u>http://dx.doi.org/10.1016/s0308-8146(00)00319-8</u>

Lee, M.-A., Choi, J.-H., Choi, Y.-S., Han, D.-J., Kim, H.-Y., Shim, S.-Y., Chung, H.-K., Kim, Ch.-J. 2010. The antioxidative properties of mustard leaf (*Brassica juncea*) kimchi extracts on refrigerated raw ground pork meat against lipid oxidation. *Meat Science*, vol. 84, no. 3, p. 498-504. http://dx.doi.org/10.1016/j.meatsci.2009.10.004

Liu, D. C., Tsau, R. T., Lin, Y. C., Jan, S. S., Tan, F. J. 2009. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. *Food Chemistry*, vol. 117, no. 1, p. 106-113. http://dx.doi.org/10.1016/j.foodchem.2009.03.083

Man, Y., Jaswir, I. 2000. Effect of rosemary and sage extracts on frying performance of refind, bleached and deodorized plam olein during deep-fat frving. Food Chemistry, vol. 69, 3, p. 301-307. no. http://dx.doi.org/10.1016/s0308-8146(99)00270-8

Marcinčák, S., Popelka, P., Šimková, J., Marcinčáková, D., Martonová, M. 2010. Oxidative stability of chilled chicken meat after feeding of selected plants. *Potravinarstvo*, vol. 4, no. 3, p. 46-49. <u>http://dx.doi.org/10.5219/38</u>

Marcinčák, S., Sokol, J., Bystrický, P., Popelka, P., Turek, P., Máté, D. 2004. Determination of lipid oxidation level in broiler meat by liquid chromatography. *Journal of AOAC International*, vol. 87, p. 1148-1152.

Mariutti, L. R. B., Orlien, V., Bragagnolo, N., Skibsted, L. H. 2008. Effect of sage and garlic on lipid oxidation in highpressure processed chicken meat. *European Food Research and Technology*, vol. 227, no. 2, p. 337-344. http://dx.doi.org/10.1007/s00217-007-0726-5

McCarthy, T. L., Kerry, J. P., Kerry, J. F., Lynch, P. B., Buckley, D. J. 2001. Assessment of the antioxidant potential of natural food and plant extracts in fresh and previously frozen pork patties. *Meat Science*, vol. 57, no. 2, p. 177-184. http://dx.doi.org/10.1016/s0309-1740(00)00090-5

McCarthy, T. L., Kerry, J. P., Kerry, J. F., Lynch, P. B., Buckley, D. J. 2001. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin E in raw and cooked pork patties. *Meat Science*, vol. 58, no. 1, p. 45-52. http://dx.doi.org/10.1016/s0309-1740(00)00129-7

McKibben, J., Engeseth, N. J. 2002. Honey as a protective agent against lipid oxidation in ground turkey. *Journal of Agricultural and Food Chemistry*, vol. 50, no. 3, p. 592-595. http://dx.doi.org/10.1021/jf010820a

Mielnick, M. B., Olsen, E., Vogt, G., Adeline, D., Skrede, G. 2006. Grape seed extract as antioxidant in cooked, cold stored turkey meat. *LWT Food Science and Technology*, vol. 39, no. 3, p. 191-198. http://dx.doi.org/10.1016/j.lwt.2005.02.003

Mihajilov-Krstev, T., Radnović, D., Kitić, D., Zlatković, B., Ristić, M., Branković, S. 2009. Chemical composition and antimicrobial activity of *Satureja hortensis* L. essential oil. *Open Life Sciences*, vol. 4, no. 3, p. 411-416. http://dx.doi.org/10.2478/s11535-009-0027-z

Mohamed, H. M., Mansour, H. A., Farag, M. D. 2011. The use of natural herbal extracts for improving the lipid stability and sensory characteristics of irradiated ground beef. *Meat Science*, vol. 87, no. 1, p. 33-39. http://dx.doi.org/10.1016/j.meatsci.2010.06.026

Nam, K. C., Ahn, D. U. 2003. Use of antioxidants to reduce lipid oxidationand off-odor volatiles of irradiated pork homogenates and patties. *Meat Science*, vol. 63, no. 1, p. 1-8. http://dx.doi.org/10.1016/s0309-1740(02)00043-8

Naveena, B. M., Sen, A. R., Vaithiyanathan, S., Babji, Y., Kondaiah, N. 2008. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. *Meat Science*, vol. 80, no. 4, p. 304-308. http://dx.doi.org/10.1016/j.meatsci.2008.06.005

Oberdieck, R. 2004. Fat protection for foods, especially meat products. *Fleischwirtschaft*, vol. 84, no. 10, p. 91–95.

Ramos Avila, F., Pro-Martínez, A., Sosa-Montes. E., Cuca-García, J. M., Becerril-Pérez, C., Figueroa-Velasco, J. L., Ruiz-Feria, C. A., Hernández-Cázares, A. S., Narciso-Gaytán, C. 2013. Dietary supplemented and meatadded antioxidants effect on the lipid oxidative stability of refrigerated and frozen cooked chicken meat. *Poultry Science*, vol. 92, no. 1, p. 243-249. <u>http://dx.doi.org/10.3382/ps.2012-</u> 02409

Rhee K. S., Anderson L. M., Sams A. R. 1996. Lipid oxidation potential of beef chicken, and pork. *Journal of Food Scince*, vol. 61, no. 1, p. 8-12. http://dx.doi.org/10.1111/j.1365-2621.1996.tb14714.x

Rodriguez-Rojo, S., Visentin, A., Maestri, D., Cocero, M. J. 2012. Assisted extraction of rosemary antioxidants with green solvents. *Journal of Food Engineering*, vol. 109, no. 1, p. 98-103. <u>http://dx.doi.org/10.1016/j.jfoodeng.2011.09.029</u>

Ryan, E., Aherne, S. A., O'Grady, M. N., McGovern, L., Kerry, J. P., O'Brien, N. M. 2009. Bioactivity of herbenriched beef patties. *Journal of Medicinal Food*, vol. 12, no. 4, p. 893–901. <u>http://dx.doi.org/10.1089/jmf.2008.0069</u>

Rzepka, M., Ozogul, F., Surowka, K., Michalczyk, M. 2013. Freshness and quality attributes of cold stored Atlantic bonito (*Sarda sarda*) gravad. *International Journal of Food Science and Technology*, vol. 48, no. 6, p. 1318-1326. http://dx.doi.org/10.1111/jifs.12094

Sampaio, G. R., Saldanha, T., Soares, R. A. M., Torres, E. A. F. S. 2012. Effect of natural antioxidant combinations on lipid oxidation in cooked chicken meat during refrigerated storage. *Food Chemistry*, vol. 135, no. 3, p. 1383-1390. http://dx.doi.org/10.1016/j.foodchem.2012.05.103

Sanchez-Escalante, A., Djenane, D., Torrescano, G., Beltran, J. A., Roncales, P. 2003. Antioxidant action of borage, rosemary, oregano, and ascorbic acid in beef patties packaged in modified atmosphere. *Journal of Food Science*, vol. 68, no. 1, p. 339-344. <u>http://dx.doi.org/10.1111/j.1365-2621.2003.tb14162.x</u>

Sasse, A., Colindres, P., Brewer, M. S. 2009. Effect of natural and synthetic antioxidants on the oxidative stability of cooked, frozen pork patties. *Journal of Food Science*, vol. 74, no. 1, S30-S35. <u>http://dx.doi.org/10.1111/j.1750-3841.2008.00979.x</u>

Sebranek, J. G., Sewalt, V. J. H., Robbins, K. L., Houser, T. A. 2005. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. *Meat Science*, vol. 69, no. 2, p. 289-296. http://dx.doi.org/10.1016/j.meatsci.2004.07.010 Shan, B., Cai, Y. Z., Sun, M., Corke, H. 2005. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. *Journal of Agricultural and Food Chemistry*, vol. 53, no. 20, p. 7749-7759. http://dx.doi.org/10.1021/jf051513y

Skandamis, P., Tsigarida, E., Nychas, G.-J. E. 2002. The effect of oregano essential oil on survival/death of Salmonella typhimuriumin meat stored at 5 °C under aerobic, VP/MAP conditions. *Food Microbiology*, vol. 19, no. 1, p. 97-103. http://dx.doi.org/10.1006/fmic.2001.0447

Tanabe, H., Yoshida, M., Tomita, N. 2002. Comparison of the antioxidant activities of 22 commonly used culinary herbs and spices on the lipid oxidation of pork meat. *Animal Science Journal*, vol. 73, no. 5, p. 389-393. http://dx.doi.org/10.1046/j.1344-3941.2002.00054.x

Tang, S., Kerry, J. P., Sheehan, D., Buckley, D. J., Morrissey, P. A. 2001. Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. *Food Research International*, vol. 34, no. 8, p. 651-657. <u>http://dx.doi.org/10.1016/s0963-9969(00)00190-3</u>

Tepe, B., Sokmen, M., Akpulat, H. A., Sokmen, A. 2006. Screening of the antioxidant potentials of six Salvia species from Turkey. *Food Chemistry*, vol. 95, no. 2, p. 200-204. http://dx.doi.org/10.1016/j.foodchem.2004.12.031

Tkáčová, J., Angelovičová, M., Haščík, P., Bobko, M. 2015. Oxidative stability of chicken meat during storage influenced by the feeding of alfalfa meal. *Potravinarstvo*, vol. 9, no. 1, p. 106-111. http://dx.doi.org/10.5219/444

Van de Braak, S. A. A. J, Leijten, G. C. J. J. 1999. Essential Oils and Oleoresins: A survey in the Netherlands and other major Markets in the European Union. CBI, Centre for the Promotion of Imports from Developing Countries, Rotterdam. p. 116.

Viuda-Martos, M., Mohamady, M. A., Fernández-López, J., Abd ElRazik, K. A., Omer, E. A., Pérez-Alvarez, J. A., Sendra, E. 2011. *In vitro* antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. *Food Control*, vol. 22, no. 11, p. 1715-1722. http://dx.doi.org/10.1016/j.foodcont.2011.04.003

Wang, L., Wang, Z., Li, X. 2013. Preliminary phytochemical and biological activities study of solvent extracts from a cold-field fruit (Malus baccata Linn) Borkh. *Industrial Crops and Products*, vol. 47, p. 20-28. http://dx.doi.org/10.1016/j.indcrop.2013.02.029

Yanishhlieva, V., Marinova, M. 1995. Antioxidant activity of selected species of the family Lamiaceae grown in Bulgaria. *Food / Nahrung*, vol. 39, no. 5-6, p. 458-463. http://dx.doi.org/10.1002/food.19950390510

Yanishlieva, N. V., Marinova, E., Pokorny, J. 2006. Natural antioxidants from herbs and spices. *European Journal of Lipid Science and Technology*, vol. 108, no. 9, p. 776-793. http://dx.doi.org/10.1002/ejlt.200600127

Yu, L., Scanlin, L., Wilson, J., Schmidt, G. 2002. Rosemary extracts as inhibitors of lipid oxidation and color change in cooked turkey products during refrigerated storage. *Journal of Food Science*, vol. 67, no. 2, p. 582-585. http://dx.doi.org/10.1111/j.1365-2621.2002.tb10642.x

Contact address:

Adriana Pavelková, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Evaluation and Processing of Animal Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: adriana.pavelkova@uniag.sk Marek Bobko, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Evaluation and Processing of Animal Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: marek.bobko@uniag.sk.

Peter Haščík, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Evaluation and Processing of Animal Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: peter.hascik@uniag.sk. Miroslava Kačániová, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: miroslava.kacaniova@uniag.sk.

Jana Tkáčová, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Evaluation and Processing of Animal Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: jana.tkacova@uniag.sk.