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ANTIBIOFILM AND ANTIOXIDANT ACTIVITY OF ROSMARINUS OFFICINALIS
ESSENTIAL OIL

Lucia Galovi¢ova, Petra Borotova, Veronika Valkovda, Miroslava Kaéaniova

ABSTRACT

The aim of the work was to explore the antioxidant potential and antibiofilm activity of the Rosmarinus officinalis essential
oil. The DPPH method was used to determine the antioxidant activity. The agar microdilution method was used to determine
the minimum biofilm inhibiting concentration (MBIC). The MALDI-TOF MS Biotyper was used to evaluate the antibiofilm
activity on the wood and glass surface. Vapor phase antimicrobial analysis was used to determine the effect on the food
model. The antioxidant activity was 28.76% +2.68%. The MBIC for Stenotrophomonas maltophilia was 25 pL.mL* and for
Bacillus subtilis 12.5 uL.mL*. Analysis of the mass spectra of S. maltophilia revealed an inhibitory effect from the 5™, which
persisted until the end of the experiment. Analysis of the mass spectra of B. subtilis showed an inhibitory effect from the 7t
of the experiment. The experiments showed an effect on both tested surfaces. The food model showed a more pronounced
effect of the Rosmarinus officinalis essential oil against B. subtilis. We assume that the effect of the essential oil is to disrupt
the polysaccharide structure of the biofilm and consequently reduce the resistance of the biofilm. We have established that
MALDI-TOF MS Biotyper is a suitable tool for evaluating changes in biofilm structure and could find more significant

application for the study of biofilms in food and clinical practice.
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INTRODUCTION

In recent years, there has been a growing interest in
research into essential oils and their applications in the food
and human health. Essential oils are volatile aromatic
substances that are obtained from glandular trichomes and
other secretory structures of plants. Subsequently, they are
distributed mainly on the surface of plant organs, especially
flowers, leaves, stems, and roots. Essential oils and their
ingredients are a safe alternative to chemical preservatives.
They have biological activity that inhibits the growth of
microorganisms (Zhang et al., 2020).

Rosemary (Rosmarinus officinalis) is a perennial aromatic
herb native to the Mediterranean Sea. It belongs to the
family Lamiaceae. R. officinalis is an important source of
volatile and non-volatile bioactive compounds (Rahbardar
et al., 2017). The main components of R. officinalis
essential oil are camphor, camphene, 1,8-cineole, B-thujene,
a-thujene, chrysanthantone, and [-cubebene. These
compounds show a variety of biological activities, including
antimicrobial, antioxidant, anti-inflammatory, and
anticarcinogenic properties (Touazi et al., 2018). Due to its
therapeutic effects, it was used in the Middle Ages for the
treatment of various diseases and it was also used as
a preservative and flavouring agent (Elyemni et al., 2019).

Biofilms are defined as complex bacterial communities
found in an exopolysaccharide matrix on both biotic and
abiotic surfaces. Biofilm formation is usually a cyclic

multistage process. It is necessary to understand this process
to develop effective strategies to combat pathogenic
biofilms (Khatoon et al., 2018). The issue of biofilm
formation concerns many food sectors such as the dairy
industry, poultry and red meat processing, and fresh
products (Kocot and Olszewska, 2017).

Stenotrophomonas maltophilia plays an important role in
the colonization of biotic and abiotic surfaces, which
significantly increases its resistance to antibiotics. This
opportunistic pathogen is the originator of many
nosocomial infections (Pompilio et al., 2020). It is also
often found in the food industry, for example in raw milk,
fish products, vegetables, and also in drinking water
reservoirs. The presence of S. maltophilia in food products
causes deterioration and significantly endangers human
health (Zhang et al., 2020).

Bacillus subtilis, a non-pathogenic, gram-positive
bacterium, is one of the most studied biofilm-forming
microorganisms. Its importance in the food industry lies in
the formation of a colony biofilm at the water-air interface
(Yahav et al., 2018). Under industrial conditions, biofilm
formation leads to costly regular cleaning, equipment
corrosion, and the production of extracellular enzymes by
biofilm bacteria. Importantly, endospore-producing biofilm
genera such as Bacillus can become a significant source of
persistent contamination (Ranmadugala et al., 2017).
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The work was aimed to evaluate the antioxidant and
antibiofilm activity of the essential oil Rosmarinus
officinalis against Stenotrophomonas maltophilia and
Bacillus subtilis. To evaluate the molecular profiles of
biofilms on glass and wood after the application of
R. officinalis essential oil using MALDI-TOF MS Biotyper.
To evaluate the effectiveness of essential oil against
biofilms in a food model (carrot, potato, apple) using the
vapor phase antimicrobial analysis.

Scientific hypothesis

After studying the available literature, we assume the
presence of bioactive substances and the antioxidant
potential of the essential oil Rosmarinus officinalis. Given
the available publications, we anticipate an antibiofilm
effect against S. maltophilia and B. subtilis. We believe that
the antibiofilm effect could also be manifested in the gas
phase in the food model.

MATERIAL AND METHODOLOGY
Samples

Rosmarinus officinalis essential oil was purchased from
the Slovak company Hanus s.r.o (Nitra, Slovakia). It was
obtained by steam distillation of a flowering flower. The
manufacturer states as the main components of the essential
oil 1,8-cineole 38 — 55%, camphor 5 — 15%, a + B pinene
13 — 23%, limonene 1 — 4%, borneol 1 — 5%. The sample
was stored in the cold (4 °C) and in the dark throughout the
analyses.

Chemicals

2,2-diphenyl-1-picrylhydrazyl (DPPH, Sigma Aldrich,
Germany), Mueller Hinton Broth (MHB, Oxoid,
Basingstoke, UK), Muller Hinton agar (MHA, Oxoid,
Basingstoke, UK).

Animals and Biological Material:

Bacterial strains forming the biofilm of Stenotrophomonas
maltophilia and Bacillus subtilis were obtained from the
dairy industry in the Czech Republic. They were identified
by 16S rRNA sequencing and MALDI-TOF MS Biotyper.
Instruments

Glomax spectrophotometer (Promega Inc., Madison,
USA), MALDI-TOF MS Biotyper (Bruker, Daltonics,
Bremen, Germany).

Laboratory Methods

To determine the antioxidant activity of Rosmarinus
officinalis essential oil, 2,2-diphenyl-1-picrylhydrazyl
(DPPH, Sigma Aldrich, Germany) was used according to
the method of Sanchez-Moreno, Larrauri and Saura-
Calixto (1998). It is a colorimetric method in which the
deep purple colour of DPPH changes to yellow after
scavenging free radicals. The colour change is detected by
a spectrophotometer. For essential oil analysis, a stock
solution of DPPH was prepared by weighing 0.0025 g of
DPPH into 100 mL of ethanol (96%). 3.9 mL of stock
solution was pipetted into the tube and 0.1 mL of
R. officinalis essential oil was added. The prepared mixture
in triplicate was incubated at laboratory temperature in the
dark place for 10 minutes. The absorbance of the sample
was measured with Glomax spectrophotometer (Promega
Inc., Madison, USA) at 515 nm and the average absorbance
of the sample was calculated. The percentage of antioxidant
activity was calculated according to the formula:

AAY% = [(A0 - AAT) / A0 x 100]

Where:
AQ - is the absorbance of the control reaction (DPPH
radical); AAT - is the absorbance of tested sample.

Minimal Biofilm Inhibitory Concentration (MBIC) was
determined according to Hassan et al. (2011). The bacterial
suspensions were incubated in the Mueller Hinton Broth
(MHB, Oxoid, Basingstoke, UK) under aerobic conditions
for 24 h at 37 °C. After incubation, an inoculum with optical
density of 0.5 McFarland standard was prepared. 100 pL
MHB and 50 pL inoculum were pipetted into a 96-well
microtiter plate. Subsequently, 100 pL of essential oil was
added to the first column of the microplate. Mixing with a
pipette gave a two-fold dilution with concentrations from
400 pL.mL* to 0.195 uL.mLt. MHB with essential oil was
used as a negative control and MHB with bacterial
inoculum was used as maximal growth control. After
culturing for 24 hours at 37 °C in an aerostat, the
supernatant was discarded, the wells were washed three
times with 250 pL of saline and allowed to dry for
30 minutes at laboratory temperature. After drying, the
wells were stained with 200 pL crystal violet (0.1% w/v) for
15 minutes. The plates were repeatedly washed with
distilled water and allowed to dry. Subsequently, 200 uL of
33% acetic acid was added to resolubilize the samples.
Samples were measured on Glomax spectrophotometer
(Promega Inc., Madison, USA) at 570 nm. The
concentration at which the absorbance was lower or equal
to the negative control was determined as MBIC.

Description of the Experiment

Sample preparation:

The analysis of the developmental stages of the biofilm
and the evaluation of the molecular differences on the glass
and the wood were performed in the same way as in
Kacaniova et al. (2020a) using MALDI-TOF MS Biotyper
(Bruker, Daltonics, Bremen, Germany).

The antibiofilm activity of R. officinalis in a food model
was analysed by a vapor phase antimicrobial assay. The
antibiofilm effect was analysed on potato, carrot, and apple.
Vegetables and fruit were cut into 5 mm slices and washed
with distilled water. A layer of Muller Hinton agar (MHA,
Oxoid, Basingstoke, UK) was poured into 60 mm Petri
dishes and lids. After the agar solidification, one slice of the
sample was placed on the plates. S. maltophilia and
B. subtilis were applied to the samples by stabbing. The
essential oil was diluted in ethyl acetate to final
concentrations of 500, 250, and 125 pg.mL™. A circle of
sterile 55 mm diameter filter paper was placed in the lid.
100 pL of the appropriate concentration of essential oil was
pipetted onto the surface of the filter paper. The filter paper
was allowed to dry for 1 minute to evaporate the ethyl
acetate and the dishes were sealed. Petri dishes were
incubated for 7 days at 37 °C. Inhibition of bacterial growth
by the essential oil was expressed as a percentage of
inhibition compared to the control, where the control
represented 0% inhibition. Inhibition by more than 50% was
considered effective.

Number of samples analyzed: biofilm18, food model 24

Number of repeated analyses: 3

Number of experiment replication: 3
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Statistical analysis

All analyses were performed in triplicate. Statistical
variability of data was processed using Microsoft-Excel®
software.

RESULTS AND DISCUSSION

The antioxidant activity of Rosmarinus officinalis
essential oil was 28.76% +2.68%. Wang et al. (2008) in
their work determined a free radical scavenging activity
62.45% +3.42%. Gachkar et al. (2007) found out, that
antioxidant activity is 69.30%. Kasparavifiené et al.
(2013) determined the antioxidant activity of R. officinalis
at 75.96% +1.12%. Hussain et al. (2010) found out free
radical scavenging activity 33.60%. Okoh, Sadimenko and
Afolayan (2011) detected, that antioxidant activity is
48.80%. Teneva et al. (2020) compared the antioxidant
activity of essential oils from the leaves and flowers of
R. officinalis. They recorded antioxidant activity in range 25
— 82%. This variability was due to the different chemical
composition of the essential oils. Mohammed et al. (2020)
set the percentage of free radical scavenging at 44.50%. Nie
et al. (2020) determined free radical scavenging activity
39.50%. Amjadi et al. (2020) determined the antioxidant
activity of rosemary essential oil at 24.00% +3.10%. Kanth
et al. (2018) examined the antioxidant activity at
concentrations range 1250 — 25000 ppm and found free
radical scavenging activity 8.16 — 51.8%. The differences
between the individual findings may be due to different
chemical composition of the essential oils and the different
concentrations of the active substances. The authors agree
that R. officinalis essential oil has increased antioxidant
activity, and our findings confirm this.

The minimal biofilm inhibiting concentrations determined
by us were 25 uL.mL? for Stenotrophomonas maltophilia
and 12.5 pL.mL"* for Bacillus subtilis. Vieira et al. (2017)
determined MBIC for B. subtilis 20 uL.mL™. Elhariry et
al. (2013) determined MBIC of rosemary 12 pL.mL™* for
the genera Bacillus and Pseudomonas. Jardak et al. (2017)
investigated the antibiofilm activity against S. epidermidis
and recorded an effect at oncentration 25 uL.mL*. Kanth
et al. (2018) determined the MBIC for the biofilm of
L. monocytogenes and S. aureus at 1.25 pL.mL™%. Quave et
al. (2008) tested the antibiofilm effect of rosemary on
S. aureus and determined MBIC 8 pL.mL™. Ceylan et al.
(2014) evaluated the antibiofilm activity of rosemary on
S. aureus and determined MBIC 1.25 pL.mL™. Nasr-Eldin,
Abdelhamid and Baraka (2017) focused on the
antibiofilm effect of essential oil on S. aureus and found
MBIC 10 puL.mL?. Rahnama et al. (2019) tested
antibiofilm activity on B. cereus with MBIC 5 pL.mL™,
Miladi et al. (2016) determined MBIC 25 puL.mL™ for the
genus Salmonella in their work. All authors agree that
Rosmarinus officinalis essential oil has significant
antibiofilm  effect. Different minimum inhibitory
concentrations are due to different origins of essential oils
with different chemical compositions and because they
were tested on different strains of bacteria.

Analysis of the mass spectra of Stenotrophomonas
maltophilia showed that on the third day of the experiment
(Figure 1A), the similarity between the experimental spectra
(wood and glass) and the control planktonic spectrum was
maintained. On the fifth day of the experiment (Figure 1B),
we recorded a gradual change in the experimental spectra

compared to the control planktonicspectrum. The same
trend was observed on the seventh day of the experiment
(Figure 1C). On the ninth day of the experiment (Figure 1D)
there was a decrease in the number of peaks in the
experimental groups compared to the planktonic spectrum.
The decrease was maintained on the twelfth day (Figure 1E)
as well as the difference compared to the planktonic
spectrum. On the last day (Figure 1F) of the experiment,
there was an increase in the number of peaks in the
experimental group compared to days 9 and 12, while
maintaining the difference from the planktonic spectrum.
The results show the inhibitory effect of the essential oil
Rosmarinus officinalis on the structure of the biofilm.

The S. maltophilia dendrogram (Figure 2) is divided into
two main clusters and 5 subclusters. In the constructed
dendrogram, it is possible to observe the grouping primarily
to the time point of view of the analysed samples. The
planktonic spectrum showed the most significant
relationship with the experimental group on day 3 of the
experiment in MSP distance. The control groups showed
shorter MSP distances, and thus higher similarity of spectra
from planktonic cells than the experimental groups in the
following days. This finding confirms the inhibitory effect
of R. officinalis essential oil.

Analysis of the mass spectra of Bacillus subtilis showed
that on days 3 and 5 of the experiment (Figures 3A and 3B),
the similarity between the experimental and planktonic
spectra was maintained. On day 7 of the experiment, the
difference between the experimental and control groups
began to show (Figure 3C). On the ninth and twelfth days
of the experiment (Figures 3D and 3E), the change in
experimental spectra compared to the control planktonic
spectrum continued. On the last day of the experiment
(Figure 3F), the most significant difference between the
experimental and control groups was noted. These findings
confirm the inhibitory effect of the essential oil on the
structure of the B. subtilis biofilm.

The B. subtilis dendrogram (Figure 4) consists of two main
clusters, and it is possible to observe that analysed samples
were grouped primarily according to time progression. The
most significant similarity of the planktonic spectrum with
the experimental group was recorded on days 3 and 5 of the
experiment. All control groups were in the same cluster as
the planktonic cells. Experimental groups from day 7 were
divided into a separate cluster. This finding confirms the
inhibitory effect of R. officinalis from day 7 of the
experiment.

Pereira et al. (2015) report that profiling with MALDI-
TOF MS Biotyper is a very useful tool. Their results showed
that the MALDI-TOF MS Biotyper approach is sufficiently
sensitive to detect phenotypic changes in biofilm
progression and can detect differences in biofilms cultured
on different surfaces. Lo and Chang (2014) stated that the
MALDI-TOF MS Biotyper is suitable for the investigation
and identification of clinical isolates, including biofilm-
forming ones. Gaudreau et al. (2018) found that the
MALDI-TOF MS Biotyper is useful for biofilm studies.
Hasan, Gopal and Wu (2011) confirm the suitability of the
MALDI-TOF MS Biotyper method for biofilm analysis.
Kacaniova et al. (2020a) analysed the effect of
Coriandrum sativum essential oil on the inhibition of
S. maltophilia and B. subtilis biofilm with positive effect.
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Figure 1 Representative MALDI-TOF mass spectra of S. maltophilia: (A) 3 days; (B) 5 days;
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Figure 3 Representative MALDI-TOF mass spectra of B. subtilis: (A) 3 days; (B) 5 days; (C) 7 days; (D) 9 days;
(E) 12 days; and (F) 14 days.
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Table 1 In situ antimicrobial analyses of vegetables and fruit with S. maltophilia in vapor phase with essential oil
R. officinalis.

Concentration of EO

r— 125 pL.L* 250 pL.L*? 500 pL.L*
Carrot 50.78 +2.59 69.82 £3.21 87.80 +1.41
Potato 24.36 +2.11 47.44 +3.56 79.92 +1.27
Apple 42.56 +2.28 53.46 +1.41 85.45 +1.69

Table 2 In situ antimicrobial analyses of vegetables and fruit with B. subtilis in vapor phase with essential oil
R. officinalis.
Concentration of EO

= ood model 125 L.t 250 pL.Lt 500 pL.L*t
Carrot 20.39 +1.21 39.73 £2.67 67.42 £1.32
Potato 62.53 +2.52 74.46 £2.71 92.48 +1.83
Apple 64.56 +1.33 73.82 £1.19 89.35 +1.87
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In another work, Ka¢aniova et al. (2020b) addressed the
antibiofilm effect of Citrus aurantium essential oil by using
MALDI-TOF MS Biotyper with positive result.

The results of the analysis of antibiofilm activity in the
food model show that the essential oil of R. officinalis
showed an inhibitory effect. The essential oil inhibited the
growth of S. maltophilia on carrots by more than 50%
(Table 1) at concentration 250 pug.mL?*. The effect was
observed on potato at 500 pgmL? and apple at
concentration 250 ug.mL. The essential oil inhibited the
growth of B. subtilis by more than 50% (Table 2) on carrots
at concentration 500 pg.mL?. The effect on potato and
apple was already manifested at concentration
125 ug.mL?. Laird and Phillips (2011) report that vapor
phase essential oils are effective antimicrobial systems and
have advantages over the use of liquid phase essential oils.
Kadaniova et al. (2020b) used this method in their work to
determine the antifungal activity of the essential oil Citrus
aurantium.

CONCLUSION

The work confirmed the antioxidant potential of
Rosmarinus officinalis essential oil using the DPPH
method. The findings suggest that the essential oil has
significant effect on biofilm inhibition. This effect was
confirmed by the change in biofilm structure recorded by
the MALDI-TOF MS Biotyper and by vapor phase
inhibition in a food model. It is believed that the effect of
the essential oil is to disrupt the polysaccharide structure of
the biofilm and consequently reduce the resistance of the
biofilm. MALDI-TOF Biotyper is a suitable tool for
evaluating changes in biofilm structure. It could find more
significant application for the study of biofilms in the food
and clinical practice.
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